Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Papers (21-38 of 38)

  1. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    Papers | 30 Oct 2006 | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-κ...

  2. A Three-Dimensional Quantum Simulation of Silicon Nanowire Transistors with the Effective-Mass Approximation

    Papers | 30 Oct 2006 | Contributor(s):: Jing Wang, POLIZZI ERIC, Mark Lundstrom

    The silicon nanowire transistor (SNWT) is a promising device structure for future integrated circuits, and simulations will be important for understanding its device physics and assessing its ultimate performance limits. In this work, we present a three-dimensional quantum mechanical simulation...

  3. Electrical Resistance: an Atomistic View

    Papers | 26 Oct 2006 | Contributor(s):: Supriyo Datta

    This tutorial article presents a “bottom-up” view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remark ably enough, no serious quantum mechanics is needed to understand electrical...

  4. Nanoscale MOSFETs: Physics, Simulation and Design

    Papers | 26 Oct 2006 | Contributor(s):: Zhibin Ren

    This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2) development of a new TCAD (technology computer aided...

  5. Modeling of Nanoscale Devices

    Papers | 19 Oct 2006 | Contributor(s):: M. P. Anantram, Mark Lundstrom, Dmitri Nikonov

    We aim to provide engineers with an introductionto the nonequilibriumGreen’s function (NEGF) approach, which is a powerful conceptual tool and a practical analysismethod to treat nanoscale electronic devices with quantum mechanicaland atomistic effects. We first review the basis for the...

  6. A Quantum Mechanical Analysis of Channel Access Geometry and Series Resistance in Nanoscale Transistors

    Papers | 19 Oct 2006 | Contributor(s):: Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom

    In this paper, we apply a two-dimensional quantum mechanical simulation scheme to study the effect of channel access geometries on device performance. This simulation scheme solves the non-equilibrium Green’s function equations self-consistently with Poisson’s equation and treats the effect of...

  7. Introduction to the Keldysh Nonequilibrium Green Function Technique

    Papers | 06 Oct 2006 | Contributor(s):: A. P. Jauho

    Keldysh nonequilibrium Green function technique is used very widely to describe transport phenomena in mesoscopic systems.The technique is somewhat subtle, and a rigorous treatment would require much more than we have at our disposal, see, for example, the text-bookk by Haug and Jauho [1].The...

  8. nanoMOS 2.0: A Two -Dimensional Simulator for Quantum Transport in Double-Gate MOSFETs

    Papers | 06 Oct 2006 | Contributor(s):: Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom

    A program to numerically simulate quantum transport in double gate MOSFETs is described. The program uses a Green’s function approach and a simple treatment of scattering based on the idea of so-called Büttiker probes. The double gate device geometry permits an efficient mode space approach that...

  9. Simulating Quantum Transport in Nanoscale Transistors: Real versus Mode-Space Approaches

    Papers | 28 Sep 2006 | Contributor(s):: Zhibin Ren, Supriyo Datta, Mark Lundstrom, Ramesh Venugopal, D. Jovanovic

    In this paper, we present a computationally efficient, two-dimensional quantum mechanical sim- ulation scheme for modeling electron transport in thin body, fully depleted, n-channel, silicon- on-insulator transistors in the ballistic limit. The proposed simulation scheme, which solves the...

  10. Device Physics and Simulation of Silicon Nanowire Transistors

    Papers | 28 Sep 2006 | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  11. Nanoscale Device Modeling: From MOSFETs to Molecules

    Papers | 20 Sep 2006 | Contributor(s):: Prashant Subhash Damle

    This thesis presents a rigorous yet practical approach to model quantum transport in nanoscale electronic devices.As convetional metal oxide semiconductor devices shrink below the one hundred nanometer regime, quantum mechanical effects are beginning to play an increasingly important role in...

  12. Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    Papers | 20 Sep 2006 | Contributor(s):: Jing Guo, Supriyo Datta, Mark Lundstrom, M. P. Anantram

    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we describe an effort underway to develop a comprehensive capability for multiscale simulation of carbon nanotube...

  13. Quantum Transport for Nanostructures

    Papers | 17 Sep 2006 | Contributor(s):: Mathieu Luisier

    Nonequilibrium Green's function techniques, initiated by Schwinger and Kadanoff and Baym allow ones to study the time evolution of a many-particle quantum sys- tem. Knowing the 1-particle Green's functions of a given system, one may evaluate 1-particle quantities like carrier density or...

  14. Exploring New Channel Materials for Nanoscale CMOS

    Papers | 21 May 2006 | Contributor(s):: Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices.Novel process techniques, such as ALD, high-k dielectrics,...

  15. Device Physics and Simulation of Silicon Nanowire Transistors

    Papers | 20 May 2006 | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  16. Notes on the Ballistic MOSFET

    Papers | 08 Oct 2005 | Contributor(s):: Mark Lundstrom

    When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter frequently from ionized impurities, phonons, surface roughness, etc. so that the average distance between scattering events (the so-called mean-free-path, λ) is much shorter than the device. When...

  17. Electrical Conduction through Molecules

    Papers | 08 Jul 2003 | Contributor(s):: Ferdows Zahid, Magnus Paulsson, Supriyo Datta

    In recent years, several experimental groups have reported measurements of the current-voltage (I-V) characteristics of individual or small numbers of molecules. Even three-terminal measurements showing evidence of transistor action has been reported using carbon nanotubes as well as...

  18. Resistance of a Molecule

    Papers | 29 Apr 2003 | Contributor(s):: Magnus Paulsson, Ferdows Zahid, Supriyo Datta

    In recent years, several experimental groups have reported measurements of the current-voltage (I-V) characteristics of individual or small numbers of molecules. Even three-terminal measurements showing evidence of transistor action has been reported using carbon nanotubes [1, 2] as well as...