Simulating Quantum Transport in Nanoscale Transistors: Real versus Mode-Space Approaches

By Zhibin Ren; Supriyo Datta1; Mark Lundstrom1; Ramesh Venugopal1; D. Jovanovic

1. Purdue University

Category

Papers

Published on

Abstract

In this paper, we present a computationally efficient, two-dimensional quantum mechanical sim- ulation scheme for modeling electron transport in thin body, fully depleted, n-channel, silicon- on-insulator transistors in the ballistic limit. The proposed simulation scheme, which solves the non-equilibrium Green’s function equations self-consistently with Poisson’s equation, is based on an expansion of the active device Hamiltonian in decoupled mode-space. Simulation results from this method are benchmarked against solutions from a rigorous two-dimensional discretization of the device Hamiltonian in real-space. While doing so, the inherent approximations, regime of va- lidity and the computational efficiency of the mode-space solution are highlighted and discussed. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off- equilibrium transport are examined. This paper shows that the decoupled mode-space solution is an efficient and accurate simulation method for modeling electron transport in nanoscale, silicon- on-insulator transistors.

Cite this work

Researchers should cite this work as follows:

  • R. Venugopal, Z. Ren, S. Datta, and M. S. Lundstrom, "Simulating Quantum Transport in Nanoscale Transistors: Real versus Mode-Space Approach," J. Appl. Phys., 92, 3730-3739, 2002.
  • Zhibin Ren, Supriyo Datta, Mark Lundstrom, Ramesh Venugopal, D. Jovanovic (2006), "Simulating Quantum Transport in Nanoscale Transistors: Real versus Mode-Space Approaches," https://nanohub.org/resources/1835.

    BibTex | EndNote

Tags