Band Structure Lab

Computes the electronic structure of various materials in the spatial configuration of bulk (infinitely periodic), quantum wells (confined in one dimension, infinitely periodic in 2 dimensions), and wires (confined in 2 dimensions and infinitely...

Launch Tool

This tool version is unpublished and cannot be run. If you would like to have this version staged, you can put a request through HUB Support.

Archive Version 1.1
Published on 08 Jan 2008, unpublished on 14 Jan 2008
Latest version: 3.1.14. All versions

doi:10.4231/D3JH3D227 cite this

This tool is closed source.

Category

Tools

Published on

Abstract

Bandstructure Lab uses the sp3s*d5 tight binding method to compute E(k) for bulk, planar, and nanowire semiconductors. Using this tool, you can quickly compute and visualize the bandstructures of bulk semiconductors, thin films, and nanowires for various materials, growth orientations, and strain conditions. Physical parameters such as the bandgap and effective mass can also be obtained from the computed E(k). The bandedges and effective masses of the bulk materials and the nanostructures structures can be analyzed as a function of various strain conditions.

As explained in a related seminar, correct band structure is essential for modeling devices at the nano scale.

  • Chapter 5 of Quantum Transport by S. Datta (Cambridge, 2005)

Credits

Bandstructure Lab is based on the tight binding model of Boykin and Klimeck, and builds on the work of several Ph.D. students and other researchers:



M. Luisier, N. Neophytou, Y. Liu... Core simulator
J. Wang... Nanowire simulation theory
A. Rahman... Bulk and thin-film simulation theory
A. Amatsuda, M. McLennan... GUI development
R. Kim... Led the integration effort

Cite this work

Researchers should cite this work as follows:

  • For the tight-binding methodology:
    Gerhard Klimeck, Fabiano Oyafuso, Timothy B. Boykin, R. Chris Bowen, and Paul von Allmen, "Development of a Nanoelectronic 3-D (NEMO 3-D) Simulator for Multimillion Atom Simulations and Its Application to Alloyed Quantum Dots" (INVITED), Computer Modeling in Engineering and Science (CMES) Volume 3, No. 5 pp 601-642 (2002).

  • For nanowire model and results:
    Jing Wang, Anisur Rahman, Gerhard Klimeck and Mark Lundstrom, "Bandstructure and Orientation Effects in
    Ballistic Si and Ge Nanowire FETs", IEEE International Electron Devices Meeting (IEDM) Tech. Digest, pp. 537-540, Washington D. C., Dec. 5-7, 2005.

  • anisur rahman, Mark Lundstrom, Michael McLennan, Gerhard Klimeck, Neophytos Neophytou, raseong kim, Mathieu Luisier (2022), "Band Structure Lab," https://nanohub.org/resources/bandstrlab. (DOI: 10.4231/D3JH3D227).

    BibTex | EndNote

Tags