Tags: circuits

Description

In 1973, SPICE was introduced to the world by Professor Donald O. Pederson of the University of California at Berkeley, and a new era of computer-aided design (CAD) tools was born. As its name implies, SPICE is a "Simulation Program with Integrated Circuit Emphasis." You give it a description of an electrical circuit, made up of resistors, capacitors, inductors, and power sources, and SPICE will predict the performance of that circuit. Instead of bread-boarding new designs in the lab, circuit designers found they could optimize their designs on computers–in effect, using computers to build better computers. Since its introduction, SPICE has been commercialized and released in a dozen variants, such as H-SPICE, P-SPICE, and ADVICE.

Learn more about circuit simulation from the resources on this site, listed below. You might even acquire a taste for SPICE by running examples online.

Online Presentations (41-45 of 45)

  1. Nanoelectronics: The New Frontier?

    Online Presentations | 18 Apr 2005 | Contributor(s):: Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths of only 50 nm, and billion transistor logic chips have arrived. Moore’s Law continues, but the end of MOSFET scaling is...

  2. CMOS Nanotechnology

    Online Presentations | 07 Jul 2004 | Contributor(s):: Mark Lundstrom

    In non-specialist language, this talk introduces CMOS technology used for modern electronics. Beginning with an explanation of "CMOS," the speaker relates basic system considerations of transistor design and identifies future challenges for CMOS electronics. Anyone with an elementary...

  3. Transistors

    Online Presentations | 04 Aug 2004 | Contributor(s):: Mark Lundstrom

    The transistor is the basic element of electronic systems. The integrated circuits inside today's personal computers, cell phones, PDA's, etc., contain hundreds of millions of transistors on a chip of silicon about 2 cm on a side. Each technology generation, engineers shrink the size of...

  4. Exponential Challenges, Exponential Rewards - The Future of Moore's Law

    Online Presentations | 14 Dec 2004 | Contributor(s):: Shekhar Borkar

    Three exponentials have been the foundation of today's electronics, which are often taken for granted—namely transistor density, performance, and energy. Moore's Law captures the impact of these exponentials. Exponentially increasing transistor integration capacity, and...

  5. Nanoelectronics and the Future of Microelectronics

    Online Presentations | 22 Aug 2002 | Contributor(s):: Mark Lundstrom

    Progress in silicon technology continues to outpace the historic pace of Moore's Law, but the end of device scaling now seems to be only 10-15 years away. As a result, there is intense interest in new, molecular-scale devices that might complement a basic silicon platform by providing it...