Introduction to Microfluidics

By Terry Kuzma1; NACK Network1

1. Center for Nanotechnology Education and Utilization, Pennsylvania State University, University Park, PA

Published on

Abstract

Prof. Terence Kuzma will discuss how modern manufacturing processes are used to create lab on a chip devices. He will discuss the unique physics of fluids on the microscale, and the solutions to meet these challenges. A hands on experience from a teaching cleanroom on the fabrication of the microfluidic channels will be discussed while sharing the detailed recipes. Simulation of a microfluidic channel to separate red blood cells will also be covered as an immediate application.

Sponsored by

Cite this work

Researchers should cite this work as follows:

  • Terry Kuzma, NACK Network (2022), "Introduction to Microfluidics," https://nanohub.org/resources/36351.

    BibTex | EndNote

Time

Tags

Introduction to Microfluidics
  • Introduction to Microfluidics 1. Introduction to Microfluidics 0
    00:00/00:00
  • Outline 2. Outline 290.25692359025692
    00:00/00:00
  • What is Microfluidics 3. What is Microfluidics 482.14881548214885
    00:00/00:00
  • What is Microfluidics 4. What is Microfluidics 718.41841841841847
    00:00/00:00
  • Micro Arrays 5. Micro Arrays 910.0767434100768
    00:00/00:00
  • Micro Arrays 6. Micro Arrays 1103.5035035035035
    00:00/00:00
  • Advantages/Disadvantes 7. Advantages/Disadvantes 1107.273940607274
    00:00/00:00
  • Growth of Microarrays 8. Growth of Microarrays 1299.1324657991324
    00:00/00:00
  • Growth of Microarrays 9. Growth of Microarrays 1325.9259259259259
    00:00/00:00
  • Outline 10. Outline 1527.8945612278947
    00:00/00:00
  • Physics of Microfluidics 11. Physics of Microfluidics 1535.4020687354021
    00:00/00:00
  • Electro-osmosis 12. Electro-osmosis 1703.6703370036705
    00:00/00:00
  • Electro-Osmonic Flow (EOF) 13. Electro-Osmonic Flow (EOF) 1743.9105772439107
    00:00/00:00
  • Some Non-ideal Considerations 14. Some Non-ideal Considerations 1760.3603603603603
    00:00/00:00
  • Laminar Flowis the Norm 15. Laminar Flowis the Norm 1986.6533199866533
    00:00/00:00
  • Laminar Flow 16. Laminar Flow 2091.358024691358
    00:00/00:00
  • Reynolds Number (estimating mixing) 17. Reynolds Number (estimating mi… 2151.4848181514849
    00:00/00:00
  • Reynolds Number 18. Reynolds Number 2216.9836503169836
    00:00/00:00
  • Reynolds Number Effects 19. Reynolds Number Effects 2260.1935268601937
    00:00/00:00
  • Reynolds Number 20. Reynolds Number 2292.8928928928931
    00:00/00:00
  • Laminar flow depends upon boundary geometry 21. Laminar flow depends upon boun… 2339.93993993994
    00:00/00:00
  • Water in a 50 um channel 22. Water in a 50 um channel 2425.392058725392
    00:00/00:00
  • Peciet Number (diffusion) 23. Peciet Number (diffusion) 2484.4844844844847
    00:00/00:00
  • Mixers (simple design to mix) 24. Mixers (simple design to mix) 2569.96996996997
    00:00/00:00
  • Mixers 25. Mixers 2637.3039706373042
    00:00/00:00
  • Common Materials 26. Common Materials 2690.357023690357
    00:00/00:00
  • Common Materials 27. Common Materials 2975.1418084751417
    00:00/00:00
  • Common Materials 28. Common Materials 3103.3366700033366
    00:00/00:00
  • Common Materials 29. Common Materials 3159.9265932599269
    00:00/00:00
  • Common Materials 30. Common Materials 3219.5195195195197
    00:00/00:00
  • Common Materials (cheap stuff) 31. Common Materials (cheap stuff) 3343.677010343677
    00:00/00:00
  • Dimensions of a gene chip 32. Dimensions of a gene chip 3461.3947280613947
    00:00/00:00
  • Conclusion 33. Conclusion 3534.4678011344681
    00:00/00:00