Study of the Interface Roughness Models using 3D Finite Element Schrödinger Equation Corrected Monte Carlo Simulator on Nanoscaled FinFET

By Daniel Nagy1; Muhammad Ali A. Elmessary1; Manuel Aldegunde2; Karol Kalna1

1. College of Engineering, Swansea University, Swansea, Wales, UK 2. School of Engineering, University of Warwick, Coventry, England, UK

Published on

Abstract

IWCE 2015 presentation.  Interface roughness scattering (IRS) is one of the key limiting scattering mechanism for both planar and non-planar CMOS devices. To predict the performance of future scaled devices and new structures the quantum mechanical confinement based IRS models are essential. In this work, the in-house 3D finite element Monte Carlo code with 2D Schrodinger equation based quantum correction serves as a base for implementation of a new multi-subband extended Prange & Nee (EPN) IRS model and for comparison with the previously used 3D Ando model. The transistors selected for the comparison are 10.7 nm gate length SOI Si FinFETs with two cross-sections: rectangular and triangular. The drive current for the rectangular device has been reduced by 25% when using the multi-subband EPN model and even more reduced for the triangular shape, by 44%, at VD = 0.7 V.

Credits

In collaboration with J. Lindberg,  A. Loureiro, College of Engineering, Swansea University, Swansea, Wales, UK, Universidade de Santiago de Compostela, Galicia, Spain

Sponsored by

Cite this work

Researchers should cite this work as follows:

  • Nagy, D, "Multi-subband interface roughness scattering using 2D finite element schodinger equation for monte carlo simulations of multi-gate transistors," in Computational Electronics (IWCE) 2015 International Workshop on, DOI: 10.1109/IWCE.2015.7301977

  • Daniel Nagy, Muhammad Ali A. Elmessary, Manuel Aldegunde, Karol Kalna (2016), "Study of the Interface Roughness Models using 3D Finite Element Schrödinger Equation Corrected Monte Carlo Simulator on Nanoscaled FinFET," https://nanohub.org/resources/23299.

    BibTex | EndNote

Time

Location

North Ballroom, PMU, Purdue University, West Lafayette, IN

Tags