Optical Multi-Dimensional Coherent Spectroscopy of Semiconductor Nanostructures

By Steven Cundiff

JILA, University of Colorado/NIST, Boulder, CO

View Presentation

Additional materials available (4)

Licensed under General Performance Usage.

Published on

Abstract

The concept of multidimensional Fourier transform spectroscopy originated in NMR where it enabled the determination of molecular structure. In either NMR or optics, a sample is excited by a series of pulses. The key concept is to correlate what happens during multiple time periods between pulses by taking a multidimensional Fourier transform. The presence of a correlation, which is manifest as an off- diagonal peak in the resulting multidimensional spectrum, indicates that the corresponding resonances are coupled. Migrating multidimensional Fourier transform spectroscopy to the infrared and visible regimes is difficult because of the need to obtain full phase information about the emitted signal and for the phase difference between the excitation pulses to be stable and precisely incremented. I will give an introduction to optical two-dimensional coherent spectroscopy and then present our use of it to study optical resonances in semiconductor nanostructures. In quantum wells, our results show that many-body effects dominate the light-matter interaction for excitons in semiconductors and provide a rigorous and quantitative test of the theory. In quantum dots, there is inhomogeneous broadening due to size dispersion, however two-dimensional coherent spectroscopy can make size-resolved measurements without the need to isolate individual quantum dots. The understanding of how semiconductor nanostructures interact with light is critical for their application in quantum photonics.

Sponsored by

References

Cite this work

Researchers should cite this work as follows:

  • Steven Cundiff (2014), "Optical Multi-Dimensional Coherent Spectroscopy of Semiconductor Nanostructures," https://nanohub.org/resources/20814.

    BibTex | EndNote

Time

Location

Birck Technology Center, Room 1001, Purdue University, West Lafayette, IN

Optical Multi-Dimensional Coherent Spectroscopy of Semiconductor Nanostructures
  • Optical Multi-Dimensional Coherent Spectroscopy of Semiconductor Nanostructures 1. Optical Multi-Dimensional Cohe… 0
    00:00/00:00
  • Outline 2. Outline 89.1891891891892
    00:00/00:00
  • Linear Spectroscopy 3. Linear Spectroscopy 191.8918918918919
    00:00/00:00
  • Ambiguities in Linear Spectra 4. Ambiguities in Linear Spectra 352.55255255255258
    00:00/00:00
  • Linear Spectroscopy 5. Linear Spectroscopy 443.44344344344347
    00:00/00:00
  • Nonlinear Spectroscopy 6. Nonlinear Spectroscopy 457.25725725725727
    00:00/00:00
  • Origin of nonlinear signal 7. Origin of nonlinear signal 591.35802469135808
    00:00/00:00
  • Two-D Coherent Spectroscopy 8. Two-D Coherent Spectroscopy 763.56356356356355
    00:00/00:00
  • Experimental Configuration 9. Experimental Configuration 1018.9522856189524
    00:00/00:00
  • Apparatus 10. Apparatus 1095.1284617951285
    00:00/00:00
  • 2D Spectrum of Atomic Vapor 11. 2D Spectrum of Atomic Vapor 1258.2916249582918
    00:00/00:00
  • 2D Spectrum of Atomic Vapor: Cross Peaks 12. 2D Spectrum of Atomic Vapor: C… 1408.4084084084084
    00:00/00:00
  • Real and Imaginary Spectra 13. Real and Imaginary Spectra 1496.2962962962963
    00:00/00:00
  • Real Spectrum 14. Real Spectrum 1615.0817484150819
    00:00/00:00
  • Real Spectrum: Theory and Experiment 15. Real Spectrum: Theory and Expe… 1636.0360360360362
    00:00/00:00
  • Double-quantum spectroscopy 16. Double-quantum spectroscopy 1664.9315982649316
    00:00/00:00
  • SIII(t, wT ~ 2wt,wt): 2-Quantum 17. SIII(t, wT ~ 2wt,wt): 2-Quantu… 1732.5992659325993
    00:00/00:00
  • Origin of two-quantum signal 18. Origin of two-quantum signal 1807.0070070070071
    00:00/00:00
  • Origin of two-quantum signal 19. Origin of two-quantum signal 1921.4881548214883
    00:00/00:00
  • SIII(t, wT ~ 2wt,wt) Simulation results 20. SIII(t, wT ~ 2wt,wt) Simulatio… 1950.0500500500502
    00:00/00:00
  • Optics of Direct-Gap Semiconductors 21. Optics of Direct-Gap Semicondu… 2214.7147147147148
    00:00/00:00
  • Multi Quantum Well Sample 22. Multi Quantum Well Sample 2346.8134801468136
    00:00/00:00
  • 2D spectrum of exciton resonances 23. 2D spectrum of exciton resonan… 2425.5588922255588
    00:00/00:00
  • Theory 24. Theory 2603.9039039039039
    00:00/00:00
  • Experiment – Theory Comparison 25. Experiment – Theory Comparis… 2639.73973973974
    00:00/00:00
  • Nonlinear Optical Response: Semiconductors vs. Atoms 26. Nonlinear Optical Response: Se… 2897.4974974974975
    00:00/00:00
  • SIII(t,wT,wt): 2-Quantum 27. SIII(t,wT,wt): 2-Quantum 2965.665665665666
    00:00/00:00
  • SIII(t,wT,wt): 2-Quantum 28. SIII(t,wT,wt): 2-Quantum 3034.1007674341008
    00:00/00:00
  • Prepulse Experiment 29. Prepulse Experiment 3061.3947280613947
    00:00/00:00
  • Quantum Droplets 30. Quantum Droplets 3132.0653987320657
    00:00/00:00
  • Natural Quantum Dots 31. Natural Quantum Dots 3175.1418084751417
    00:00/00:00
  • Temperature and Energy Dependence of Homogeneous Linewidth 32. Temperature and Energy Depende… 3237.5375375375374
    00:00/00:00
  • Linewidth Temperature Dependence 33. Linewidth Temperature Dependen… 3281.1144477811144
    00:00/00:00
  • Homogeneous Linewidth Intensity Dependence 34. Homogeneous Linewidth Intensit… 3356.8234901568235
    00:00/00:00
  • InAs Quantum Dot Sample 35. InAs Quantum Dot Sample 3421.0543877210544
    00:00/00:00
  • 2D spectra of InAs QDs 36. 2D spectra of InAs QDs 3463.9305972639308
    00:00/00:00
  • Biexciton Peaks 37. Biexciton Peaks 3498.3316649983317
    00:00/00:00
  • Biexciton Linewidth & Binding Energy 38. Biexciton Linewidth & Binding … 3506.4731398064732
    00:00/00:00
  • Single QD studies of Biexciton Binding 39. Single QD studies of Biexciton… 3528.0613947280617
    00:00/00:00
  • Physical Interpretation 40. Physical Interpretation 3543.41007674341
    00:00/00:00
  • Summary 41. Summary 3558.0246913580249
    00:00/00:00
  • Acknowledgments 42. Acknowledgments 3607.6743410076747
    00:00/00:00
  • Further Reading 43. Further Reading 3634.5345345345345
    00:00/00:00
  • 44. 3648.3483483483483
    00:00/00:00