Tags: MOSFET

Description

The metal–oxide–semiconductor field-effect transistor is a device used for amplifying or switching electronic signals. In MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting channel between the two other contacts called source and drain. The channel can be of n-typeor p-type, and is accordingly called an nMOSFET or a pMOSFET (also commonly nMOS, pMOS). It is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. More information on MOSFET can be found here.

Papers (1-12 of 12)

  1. Transistors!

    Papers | 04 Mar 2024 | Contributor(s):: Mark Lundstrom

    As we begin a new era, in which making transistors smaller will no longer be a major driving force for progress, it is time to look back at what we have learned in transistor research. Today we see a need to convey as simply and clearly as possible the essential physics of the device that makes...

  2. Fundamentals of Nanotransistors

    Papers | 30 Jan 2022 | Contributor(s):: Mark Lundstrom

    The objective of these lectures is to provide readers with an understanding of the essential physics of nanoscale transistors as well as some of the practical technological considerations and fundamental limits. This book is written in a way that is broadly accessible to students with only a...

  3. Chapter 1: A Primer on the MOSFet Simulator on nanoHUB.org

    Papers | 19 Mar 2020 | Contributor(s):: Abdussamad Ahmed Muntahi, Dragica Vasileska, Shaikh S. Ahmed

    The MOSFet simulator on nanoHUB.org (http://nanohub.org/resources/mosfet) simulates the equilibrium electrostatics and non-equilibrium current-voltage (I-V) characteristics of i) bulk, ii) dual-gate, and iii) SOI based field effect transistors. In this chapter, we will describe: i) the structure...

  4. III-V Nanoscale MOSFETS: Physics, Modeling, and Design

    Papers | 28 Jun 2013 | Contributor(s):: Yang Liu

    As predicted by the International Roadmap for Semiconductors (ITRS), power consumption has been the bottleneck for future silicon CMOS technology scaling. To circumvent this limit, researchers are investigating alternative structures and materials, among which III-V compound semiconductor-based...

  5. Device Physics Studies of III-V and Silicon MOSFETS for Digital Logic

    Papers | 28 Jun 2013 | Contributor(s):: Himadri Pal

    III-V's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before III-V's can replace silicon (Si) in extremely scaled devices. The effect of low density-of-states of III-V materials...

  6. Exploring New Channel Materials for Nanoscale CMOS

    Papers | 28 Jun 2013 | Contributor(s):: Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices. Novel process techniques, such as ALD, high-# dielectrics, and...

  7. Nanoscale MOSFETS: Physics, Simulation and Design

    Papers | 28 Jun 2013 | Contributor(s):: Zhibin Ren

    This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2)development of a new TCAD (technology computer aided...

  8. Two-Dimensional Scattering Matrix Simulations of Si MOSFET'S

    Papers | 28 Jun 2013 | Contributor(s):: Carl R. Huster

    For many years now, solid state device simulators have been based on the drift-diffusion equations. As transistor sizes have been reduced, there has been considerable concern about the predictive capability of these simulators. This concern has lead to the development of a number of simulation...

  9. Computational and Experimental Study of Transport in Advanced Silicon Devices

    Papers | 28 Jun 2013 | Contributor(s):: Farzin Assad

    In this thesis, we study electron transport in advanced silicon devices by focusing on the two most important classes of devices: the bipolar junction transistor (BJT) and the MOSFET. In regards to the BJT, we will compare and assess the solutions of a physically detailed microscopic model to...

  10. Simulation of highly idealized, atomic scale MQCA logic circuits

    Papers | 15 Nov 2007 | Contributor(s):: Dmitri Nikonov, George Bourianoff

    Spintronics logic devices based on majority gates formed by atomic-level arrangements of spins in the crystal lattice is considered. The dynamics of switching is modeled by time-dependent solution of the density-matrix equation with relaxation. The devices are shown to satisfy requirements for...

  11. Nanoscale MOSFETs: Physics, Simulation and Design

    Papers | 26 Oct 2006 | Contributor(s):: Zhibin Ren

    This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2) development of a new TCAD (technology computer aided...

  12. nanoMOS 2.0: A Two -Dimensional Simulator for Quantum Transport in Double-Gate MOSFETs

    Papers | 06 Oct 2006 | Contributor(s):: Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom

    A program to numerically simulate quantum transport in double gate MOSFETs is described. The program uses a Green’s function approach and a simple treatment of scattering based on the idea of so-called Büttiker probes. The double gate device geometry permits an efficient mode space approach that...