Tags: devices

Description

On June 30, 1948, AT&T Bell Labs unveiled the transitor to the world, creating a spark of explosive economic growth that would lead into the Information Age. William Shockley led a team of researchers, including Walter Brattain and John Bardeen, who invented the device. Like the existing triode vacuum tube device, the transistor could amplify signals and switch currents on and off, but the transistor was smaller, cheaper, and more efficient. Moreover, it could be integrated with millions of other transistors onto a single chip, creating the integrated circuit at the heart of modern computers.

Today, most transistors are being manufactured with a minimum feature size of 60-90nm--roughly 200-300 atoms. As the push continues to make devices even smaller, researchers must account for quantum mechanical effects in the device behavior. With fewer and fewer atoms, the positions of impurities and other irregularities begin to matter, and device reliability becomes an issue. So rather than shrink existing devices, many researchers are working on entirely new devices, based on carbon nanotubes, spintronics, molecular conduction, and other nanotechnologies.

Learn more about transistors from the many resources on this site, listed below. Use our simulation tools to simulate performance characteristics for your own devices.

Presentation Materials (1-2 of 2)

  1. Quantitative Modeling and Simulation of Quantum Dots

    Presentation Materials | 18 Apr 2011 | Contributor(s):: Muhammad Usman

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted...

  2. Nanoelectronic Scaling Tradeoffs: What does Physics Have to Say?

    Presentation Materials | 23 Sep 2003 | Contributor(s):: Victor Zhirnov

    Beyond CMOS, several completely new approaches to information-processing and data-storage technologies and architectures are emerging to address the timeframe beyond the current SIA International Technology Roadmap for Semiconductors (ITRS). A wide range of new ideas have been proposed for...