2010 Nano-Biophotonics Summer School @ UIUC Lecture 4 - Gaussian beam propagation - Elastic light scattering - Dynamic light scattering

By Gabriel Popescu

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL

Published on

Abstract

Often, experiments involve light beams. A light beam can be defined as a distribution of field that fulfills the approximation in Eq. 20,
i.e. is characterized by a dominant wave vector component, k(z) >> k(x) , k(y) . A beam is, therefore, the spatial equivalent of quasimonochromatic
light, where the field is characterized by a dominant (temporal) frequency component.
A Gaussian beam, such as that delivered by a single (spatial) mode laser, exhibits a field distribution described by a Gaussian
function in the transverse coordinate.

The general goal in light scattering experiments is to infer information about the refractive index distribution n(r) from
measurements on the scattered light, i.e. to solve the inverse problem. In the following, we show that this problem can be solved if we
assume weakly scattering media.

Dynamic light scattering (DLS) studies the properties of inhomogeneous and dynamic media. A generic experimental situation is
illustrated in Fig. 1, where a plane wave scatters on a system of randomly moving particles.

Credits

Edited and Uploaded by Omar Sobh, University of Illinois at Urbana-Champaign

Cite this work

Researchers should cite this work as follows:

  • Gabriel Popescu (2010), "2010 Nano-Biophotonics Summer School @ UIUC Lecture 4 - Gaussian beam propagation - Elastic light scattering - Dynamic light scattering," https://nanohub.org/resources/9746.

    BibTex | EndNote

Time

Location

University of Illinois at Urbana-Champaign, Urbana, IL

Tags