Quantum Tunneling Exercise

By Gerhard Klimeck1; Parijat Sengupta1; Dragica Vasileska2

1. Purdue University 2. Arizona State University

Published on

Abstract

Exercise Background

Tunneling is fully quantum-mechanical effect that does not have classical analog. Tunneling has revolutionized surface science by its utilization in scanning tunneling microscopes. In some device applications tunneling is required for the operation of the device (Resonant tunneling diodes, EEPROMs � floating gate memories), but in some cases it leads to unwanted power dissipation, such as gate leakage in both MOS and Schottky transistors.

Exercise Objectives

The objective of this exercise is to:

1. Calculate analytically the tunneling coefficient for a single barrier.

2. Verify the analytical results obtained by simulating a potential barrier using the Piece-
Wise-Constant Potential Barrier Tool (PCPBT).

Cite this work

Researchers should cite this work as follows:

  • Gerhard Klimeck, Parijat Sengupta, Dragica Vasileska (2010), "Quantum Tunneling Exercise," https://nanohub.org/resources/9193.

    BibTex | EndNote

Tags