Spintronics Functionalities of Topological Semimetals

Published on

Abstract

The electrical control of spin magnetization aims to be used in next-generation magnetic devices, allowing information to be written electronically. Recently, developments of spintronics functionalities of topological materials have been drawn interests for achieving novel electrical manipulation of the magnetization, and generation of spin currents [1,2].

In this presentation, we theoretically study the spin-transfer torque effect and dynamics of magnetic textures in magnetic Weyl semimetals [3-6]. Due to the strong spin-orbit coupling in Weyl semimetal, the spin-transfer torque can be significantly enhanced. We evaluate the electrically-induced non-equilibrium spin density in the Weyl semimetal and obtain the analytical expression of the spin torque corresponding to a non-adiabatic spin-transfer torque. Importantly, the obtained spin torque is independent of impurity scattering when magnetization varies steeply, indicating that the phenomenon is an intrinsic effect and its strength outstrips that of conventional materials. Furthermore, due to a suppression of the longitudinal conductivity in this regime, the dissipation from the Joule heating for the spin-transfer torque is smaller than that in conventional ferromagnetic metals. We analyze the dynamics of domain walls driven by the obtained spin-transfer torque and find that a domain wall velocity can be one order of magnitude faster than that of a conventional ferromagnetic nanowire. Consequently, fast control of domain walls can be achieved with less dissipation from the Joule heating in the Weyl semimetal. Therefore, the Weyl semimetal may be a new candidate material for low-energy-consumption spintronics devices, such as a racetrack memory.

In the latter part of the presentation, we study spin pumping and spin-orbit torques in magnetic heterostructures consisting of a magnetic insulator and a topological Dirac semimetal. It is shown that, due to the spin pumping and the large spin Hall angle, the induced charge current in the topological Dirac semimetal is semi-quantized. We also demonstrate that this system generates large spin-orbit torques which switch the direction of the local magnetization in the ferromagnetic insulator [7].

Bio

Professor Kentaro Nomura received his Ph.D. in theoretical physics at the University of Tokyo in 2003. He is an Associate Professor of the Institute for Materials Research (IMR) at Tohoku University.

Credits

Ken Nomura Associate Professor of the Institute for Materials Research (IMR), Tohoku University

References

  1. K. Nomura and D. Kurebayashi, Phys. Rev. Lett. 115, 127201(2015).
  2. D. Kurebayashi and K. Nomura, Phys. Rev. Applied. 6, 044013 (2016).
  3. D. Kurebayashi and K. Nomura, Sci. Rep. 9, 5365 (2019).
  4. Y. Araki, A. Yoshida, and K. Nomura, Phys. Rev. B 94, 115312 (2016).
  5. Y. Araki and K. Nomura, Phys. Rev. Applied. 10, 014007 –1-7 (2018).
  6. Y. Araki, A. Yoshida, and K. Nomura, Phys. Rev. B 98, 045302 – 1-10 (2018).
  7. T. Misawa and K. Nomura, arXiv:1907.10459.

Cite this work

Researchers should cite this work as follows:

  • (2020), "Spintronics Functionalities of Topological Semimetals," https://nanohub.org/resources/34442.

    BibTex | EndNote

Time

Location

Burton Morgan, Room 121, Purdue University, West Lafayette, IN

Tags

Spintronics Functionalities of Topological Semimetals
  • Spintronics functionalities of topological semimetals 1. Spintronics functionalities of… 0
    00:00/00:00
  • Acknowledgement 2. Acknowledgement 26.292959626292962
    00:00/00:00
  • Spintronics 3. Spintronics 33.166499833166505
    00:00/00:00
  • Spintronics 4. Spintronics 61.0276943610277
    00:00/00:00
  • Spintronics 5. Spintronics 93.660326993660334
    00:00/00:00
  • Spintronics 6. Spintronics 106.17283950617285
    00:00/00:00
  • Outline 7. Outline 152.75275275275277
    00:00/00:00
  • Weyl semimetals 8. Weyl semimetals 175.44210877544211
    00:00/00:00
  • Weyl semimetals 9. Weyl semimetals 201.83516850183517
    00:00/00:00
  • Weyl semimetals 10. Weyl semimetals 211.27794461127795
    00:00/00:00
  • Magnetic Weyl semimetals 11. Magnetic Weyl semimetals 238.37170503837172
    00:00/00:00
  • Weyl semimetals 12. Weyl semimetals 241.70837504170839
    00:00/00:00
  • Weyl semimetals 13. Weyl semimetals 267.76776776776779
    00:00/00:00
  • Weyl semimetals 14. Weyl semimetals 274.07407407407408
    00:00/00:00
  • Weyl semimetals 15. Weyl semimetals 296.16282949616283
    00:00/00:00
  • Weyl semimetals 16. Weyl semimetals 338.90557223890556
    00:00/00:00
  • Weyl semimetals 17. Weyl semimetals 380.04671338004675
    00:00/00:00
  • Weyl semimetal Co3Sn2S2 18. Weyl semimetal Co3Sn2S2 432.63263263263264
    00:00/00:00
  • Weyl semimetal Co3Sn2S2 19. Weyl semimetal Co3Sn2S2 455.02168835502169
    00:00/00:00
  • Weyl semimetal Co3Sn2S2 20. Weyl semimetal Co3Sn2S2 487.354020687354
    00:00/00:00
  • Weyl semimetal Co3Sn2S2 21. Weyl semimetal Co3Sn2S2 502.83616950283619
    00:00/00:00
  • Effective model for Co3Sn2S2 22. Effective model for Co3Sn2S2 515.4154154154154
    00:00/00:00
  • Effective model for Co3Sn2S2 23. Effective model for Co3Sn2S2 525.09175842509183
    00:00/00:00
  • Effective model for Co3Sn2S2 24. Effective model for Co3Sn2S2 565.53219886553222
    00:00/00:00
  • Effective model for Co3Sn2S2 25. Effective model for Co3Sn2S2 595.09509509509508
    00:00/00:00
  • Effective model for Co3Sn2S2 26. Effective model for Co3Sn2S2 602.73606940273612
    00:00/00:00
  • Effective model for Co3Sn2S2 27. Effective model for Co3Sn2S2 608.008008008008
    00:00/00:00
  • Effective model for Co3Sn2S2 28. Effective model for Co3Sn2S2 624.79145812479146
    00:00/00:00
  • Effective model for Co3Sn2S2 29. Effective model for Co3Sn2S2 633.63363363363362
    00:00/00:00
  • Effective model for Co3Sn2S2 30. Effective model for Co3Sn2S2 657.957957957958
    00:00/00:00
  • Effective model for Co3Sn2S2 31. Effective model for Co3Sn2S2 663.09642976309647
    00:00/00:00
  • Outline 32. Outline 672.67267267267266
    00:00/00:00
  • Giant MagnetoResistance (GMR) 33. Giant MagnetoResistance (GMR) 677.47747747747746
    00:00/00:00
  • GMR in Kagome-Weyl semimetals 34. GMR in Kagome-Weyl semimetals 704.00400400400406
    00:00/00:00
  • GMR in Kagome-Weyl semimetals 35. GMR in Kagome-Weyl semimetals 772.90623957290632
    00:00/00:00
  • GMR in Kagome-Weyl semimetals 36. GMR in Kagome-Weyl semimetals 804.03737070403736
    00:00/00:00
  • GMR in Kagome-Weyl semimetals 37. GMR in Kagome-Weyl semimetals 839.73973973973978
    00:00/00:00
  • GMR in Kagome-Weyl semimetals 38. GMR in Kagome-Weyl semimetals 857.92459125792459
    00:00/00:00
  • Domain-wall magnetoresistance 39. Domain-wall magnetoresistance 871.10443777110447
    00:00/00:00
  • Domain-wall magnetoresistance 40. Domain-wall magnetoresistance 894.22756089422762
    00:00/00:00
  • Domain-wall magnetoresistance 41. Domain-wall magnetoresistance 898.43176509843181
    00:00/00:00
  • Domain-wall magnetoresistance 42. Domain-wall magnetoresistance 904.97163830497163
    00:00/00:00
  • Domain-wall magnetoresistance 43. Domain-wall magnetoresistance 907.84117450784117
    00:00/00:00
  • Outline 44. Outline 940.50717384050722
    00:00/00:00
  • Domain wall motion 45. Domain wall motion 942.97630964297639
    00:00/00:00
  • Domain wall motion 46. Domain wall motion 954.42108775442114
    00:00/00:00
  • DW motion in Weyl semimetals 47. DW motion in Weyl semimetals 1024.9582916249583
    00:00/00:00
  • DW motion on Kagome lattice 48. DW motion on Kagome lattice 1067.0337003670338
    00:00/00:00
  • DW motion on Kagome lattice 49. DW motion on Kagome lattice 1069.9366032699365
    00:00/00:00
  • DW motion on Kagome lattice 50. DW motion on Kagome lattice 1077.4441107774442
    00:00/00:00
  • DW motion on Kagome lattice 51. DW motion on Kagome lattice 1082.0153486820154
    00:00/00:00
  • Charge accumulation at DW 52. Charge accumulation at DW 1103.3366700033366
    00:00/00:00
  • Charge accumulation at DW 53. Charge accumulation at DW 1119.2525859192526
    00:00/00:00
  • Charge accumulation at DW 54. Charge accumulation at DW 1123.4901568234902
    00:00/00:00
  • Charge accumulation at DW 55. Charge accumulation at DW 1127.660994327661
    00:00/00:00
  • Charge accumulation at DW 56. Charge accumulation at DW 1129.8965632298966
    00:00/00:00
  • Charge accumulation at DW 57. Charge accumulation at DW 1131.5315315315315
    00:00/00:00
  • Charge accumulation at DW 58. Charge accumulation at DW 1132.8661995328662
    00:00/00:00
  • Charge accumulation at DW 59. Charge accumulation at DW 1135.1017684351018
    00:00/00:00
  • Charge accumulation at DW 60. Charge accumulation at DW 1141.7083750417085
    00:00/00:00
  • Summary 61. Summary 1198.9656322989656
    00:00/00:00