How Plasmonic Materials Make Light Work at Nanoscale

By Alexandra Boltasseva

Electrical and Computer Engineering, Purdue University, West Lafayette, IN

Published on

Bio

Alexandra Boltasseva Prof. Boltasseva?s team specializes in nanophotonics, optical materials and nanotechnology focusing on materials for plasmonics and nanophotonic technologies, nanoscale optics, plasmonics, optical metamaterials, nanolithography, nanofabrication and material growth. The central theme of Boltasseva?s research is to find new ways for realization of plasmonic and nanophotonic devices - from material building blocks to advanced designs and demonstrations. Prof. Boltasseva?s team aims at developing new technological platforms to unlock properties of nanophotonic structures in previously unavailable designs and wavelength regimes and to enable new generations of low-loss, tunable, reconfigurable, semiconductor-compatible devices for applications in onchip optics and optoelectronics, information processing, data recording/storage, nanoscale light manipulation, sensing, medical imaging and therapy, and energy conversion.

Sponsored by

Cite this work

Researchers should cite this work as follows:

  • Alexandra Boltasseva (2019), "How Plasmonic Materials Make Light Work at Nanoscale," https://nanohub.org/resources/30964.

    BibTex | EndNote

Time

Location

Room 1001, Birck Nanotechnology Center, Purdue University, West Lafayette, IN

Tags

How Plasmonic Materials Make Light Work at Nanoscale
  • How Plasmonic Materials Make Light Work at Nanoscale 1. How Plasmonic Materials Make L… 0
    00:00/00:00
  • THE INTERNATIONAL YEAR OF LIGHT 2. THE INTERNATIONAL YEAR OF LIGH… 130.03003003003005
    00:00/00:00
  • THE INTERNATIONAL YEAR OF LIGHT 3. THE INTERNATIONAL YEAR OF LIGH… 214.08074741408075
    00:00/00:00
  • OPTICAL TECHNOLOGIES 4. OPTICAL TECHNOLOGIES 264.66466466466466
    00:00/00:00
  • IMPACT OF INFORMATION TECHNOLOGIES 5. IMPACT OF INFORMATION TECHNOLO… 344.87821154487824
    00:00/00:00
  • ELECTRONICS VS PHOTONICS 6. ELECTRONICS VS PHOTONICS 368.80213546880213
    00:00/00:00
  • ELECTRONICS VS PHOTONICS 7. ELECTRONICS VS PHOTONICS 383.31664998331667
    00:00/00:00
  • ELECTRONICS VS PHOTONICS 8. ELECTRONICS VS PHOTONICS 527.42742742742746
    00:00/00:00
  • NEED FOR NEW APPROACHES 9. NEED FOR NEW APPROACHES 659.22589255922594
    00:00/00:00
  • WHAT'S NEXT? 10. WHAT'S NEXT? 696.52986319652985
    00:00/00:00
  • CHALLENGE 11. CHALLENGE 739.53953953953953
    00:00/00:00
  • NANOPHOTONICS=PLASMONICS 12. NANOPHOTONICS=PLASMONICS 799.03236569903243
    00:00/00:00
  • NANOPHOTONICS=PLASMONICS 13. NANOPHOTONICS=PLASMONICS 911.84517851184523
    00:00/00:00
  • EMERGING FLAT OPTICS 14. EMERGING FLAT OPTICS 1011.378044711378
    00:00/00:00
  • ULTRA-THIN HOLOGRAM 15. ULTRA-THIN HOLOGRAM 1033.6670003336672
    00:00/00:00
  • NANOPHOTONICS=PLASMONICS 16. NANOPHOTONICS=PLASMONICS 1038.1047714381048
    00:00/00:00
  • PLASMONICS FOR HYBRID ON-CHIP CIRCUITRY 17. PLASMONICS FOR HYBRID ON-CHIP … 1073.9406072739407
    00:00/00:00
  • PLASMONICS FOR HYBRID ON-CHIP CIRCUITRY 18. PLASMONICS FOR HYBRID ON-CHIP … 1102.6026026026027
    00:00/00:00
  • NANOPHOTONICS=PLASMONICS 19. NANOPHOTONICS=PLASMONICS 1123.3566900233568
    00:00/00:00
  • MATERIALS BUILDING BLOCKS 20. MATERIALS BUILDING BLOCKS 1152.4858191524859
    00:00/00:00
  • NANOPHOTONICS WITH CONDUCTING OXIDES 21. NANOPHOTONICS WITH CONDUCTING … 1230.7974641307976
    00:00/00:00
  • TCO HIGHLIGHTS/RESULTS 22. TCO HIGHLIGHTS/RESULTS 1298.7654320987656
    00:00/00:00
  • METASURFACES FOR LIDAR AND SECURITY 23. METASURFACES FOR LIDAR AND SEC… 1341.4748081414748
    00:00/00:00
  • FUTURE FLAT/CONFORMAL OPTICAL TECHNOLOGIES 24. FUTURE FLAT/CONFORMAL OPTICAL … 1365.1317984651319
    00:00/00:00
  • METALS TO 'LESS-METALS' 25. METALS TO 'LESS-METALS' 1420.4204204204204
    00:00/00:00
  • ALL THAT GLITTERS NEED NOT BE GOLD! 26. ALL THAT GLITTERS NEED NOT BE … 1447.5141808475141
    00:00/00:00
  • TITANIUM NITRIDE 27. TITANIUM NITRIDE 1466.2662662662663
    00:00/00:00
  • POTENTIAL OF PLASMONIC CERAMIC MATERIALS 28. POTENTIAL OF PLASMONIC CERAMIC… 1479.612946279613
    00:00/00:00
  • TMNs HIGHLIGHTS/RESULTS 29. TMNs HIGHLIGHTS/RESULTS 1508.3416750083418
    00:00/00:00
  • Photonic Spin Hall Effect in TiN Metasurface 30. Photonic Spin Hall Effect in T… 1521.3213213213214
    00:00/00:00
  • SOLAR/THERMOPHOTOVOLTAICS (S/TPV) 31. SOLAR/THERMOPHOTOVOLTAICS (S/T… 1539.0056723390057
    00:00/00:00
  • TiN for SOLAR/THERMOPHOTOVOLTAIC 32. TiN for SOLAR/THERMOPHOTOVOLTA… 1539.5729062395731
    00:00/00:00
  • HEAT ASSISTED MAGNETIC RECORDING 33. HEAT ASSISTED MAGNETIC RECORDI… 1569.9366032699368
    00:00/00:00
  • THERMOPHOTOVOLTAIC GENERATOR 34. THERMOPHOTOVOLTAIC GENERATOR 1587.8545211878545
    00:00/00:00
  • FROM SOLAR STEAM TO WATER SPLITTING 35. FROM SOLAR STEAM TO WATER SPLI… 1602.9362696029364
    00:00/00:00
  • THERMOPLASMONIC TiN NANOFURNACE 36. THERMOPLASMONIC TiN NANOFURNAC… 1620.8541875208543
    00:00/00:00
  • GRAPHENE FRACTAL PHOTODETECTOR 37. GRAPHENE FRACTAL PHOTODETECTOR 1636.403069736403
    00:00/00:00
  • MAX/MXenes 38. MAX/MXenes 1676.1761761761763
    00:00/00:00
  • MXene BROADBAND ABSORBER 39. MXene BROADBAND ABSORBER 1695.9292625959292
    00:00/00:00
  • MXene for WATER DESALINATION 40. MXene for WATER DESALINATION 1699.8665331998666
    00:00/00:00
  • ULTRA-THIN PLASMONIC FILMS 41. ULTRA-THIN PLASMONIC FILMS 1712.7127127127128
    00:00/00:00
  • OPTICAL PROPERTIES OF ULTRATHIN TiN 42. OPTICAL PROPERTIES OF ULTRATHI… 1756.1561561561562
    00:00/00:00
  • PROGRESS IN TECHNOLOGY 43. PROGRESS IN TECHNOLOGY 1763.6970303636972
    00:00/00:00
  • TOWARD QUANTUM COMPUTING 44. TOWARD QUANTUM COMPUTING 1800.3003003003005
    00:00/00:00
  • FUTURE PHOTONIC TECHNOLOGIES 45. FUTURE PHOTONIC TECHNOLOGIES 1822.4891558224892
    00:00/00:00
  • TEAM AND SUPPORT 46. TEAM AND SUPPORT 1841.675008341675
    00:00/00:00
  • POTENTIAL TECHNOLOGY IMPACT 47. POTENTIAL TECHNOLOGY IMPACT 1861.7617617617618
    00:00/00:00