KiriGAMI Design and Analysis Tutorial

By Subhadeep De

University of Illinois at Urbana-Champaign

Published on

Abstract

GAMIAN is a design and mechanical ANalysis tool for KiriGAMI structures. Starting from designing cuts or incisions on any thin-film structure to solving for its final deformed configuration under planar loading, all the steps can be carried out using GAMIAN. GAMIAN provides functionalities to select material, define the Kirigami geometry, perform meshing, and numerically solve for the deformation response using the nonlinear finite-element method. Using these capabilities, a user can iterate over the choice of materials and geometric dimensions and cut-patterns and achieve the desired deformation pattern of a Kirigami structure.

Additional Background

Kirigami (‘kiri’- cut, ‘gami’- paper), an ancient art of paper cutting, offers a structural design platform to yield unconventional mechanical and morphological responses by tuning the stiffness and deformation behaviors of the underlying material. Strategic kirigami incisions or notches applied on 2D precursor can enable the creation of highly deformable devices while maintaining the functional components strain-free, thereby offering significant implications for stretchable/reconfigurable electronics and soft robotics. As kirigami features yield geometric deformations that dominate the inherent material elasticity, the properties and structures of kirigami metamaterials can be controlled by the pattern and orientation of the incisions and notches. Under mechanical loading/stretching, 2D kirigami surface architectures morph into three-dimensional (3D) structures in the vicinity of patterned regions owing to buckling and mechanical bi-stability. GAMIAN can be used to predict the final morphology of a kirigami structure for a given choice of material and cut-patterns, and thereby optimize those parameters to achieve the desired morphology.

Cite this work

Researchers should cite this work as follows:

  • Subhadeep De (2019), "KiriGAMI Design and Analysis Tutorial," https://nanohub.org/resources/30072.

    BibTex | EndNote

Submitter

Darren K Adams

University of Illinois at Urbana-Champaign

Tags