[Illinois] ECE 416 Optical Sensors II

By Brian Cunningham

University of Illinois at Urbana-Champaign

Published on

Abstract

           In this lecture, there is a review of the previous lecture of SPR Sensors along with Reflection Interference Spectroscopy. We learned that as we go to longer wavelengths, the refractive index is more constant. Then, we looked at the data of an RIFS and how to interpret it. The advantages of the system is that it is simple to make and makes non-contact measurements. However, the disadvantages include a low throughput, which means we receive around one result at a time.The system also has a very low sensitivity. Then, we looked at optical resonators, which are like guided light waves. We can put biomolecules along a ring and have the light waves detect them through varying intensities.

Bio

My research group is focused on the application of sub-wavelength optical phenomena and fabrication methods to the development of novel devices and instrumentation for the life sciences. The group is highly interdisciplinary, with expertise in the areas of microfabrication, nanotechnology, computer simulation, instrumentation, molecular biology, and cell biology. In particular, we are working on biosensors based upon photonic crystal concepts that can either be built from low-cost flexible plastic materials, or integrated with semiconductor-based active devices, such as light sources and photodetectors, for high performance integrated detection systems.

Using a combination of micrometer-scale and nanometer-scale fabrication tools, we are devising novel methods and materials for producing electro-optic devices with nanometer-scale features that can be scaled for low-cost manufacturing. Many of our techniques are geared for compatibility with flexible plastic materials, leading to applications such as low cost disposable sensors, wearable sensors, flexible electronics, and flexible displays. Because our structures manipulate light at a scale that is smaller than an optical wavelength, we rely on computer simulation tools such as Rigorous Coupled Wave Analysis (RCWA) and Finite Difference Time Doman (FDTD) to model, design, and understand optical phenomena within photonic crystals and related devices.

In addition to fabricating devices, our group is also focused on the design, prototyping, and testing of biosensor instrumentation for high sensitivity, portability, and resolution. Advanced instruments enable high resolution imaging of biochemical and cellular interactions with the ability to monitor images of biochemical interactions as a function of time. Using the sensors and instrumentation, we are exploring new applications for optical biosensor technology including protein microarrays, biosensor/mass spectrometry systems, and microfluidics-based assays using nanoliter quantities of reagents. The methods and systems developed in the laboratory are applied in the fields of life science research, drug discovery, diagnostic testing, and environmental monitoring. -From Professor Cunningham's Faculty Profile

Cite this work

Researchers should cite this work as follows:

  • Brian Cunningham (2013), "[Illinois] ECE 416 Optical Sensors II," https://nanohub.org/resources/17350.

    BibTex | EndNote

Time

Location

University of Illinois, Urbana-Champaign, IL

Submitter

NanoBio Node, Obaid Sarvana, George Daley

University of Illinois at Urbana-Champaign

Tags