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Abstract In the past decade, with the miniaturization of electronic circuits and growing interest
in microscale heat transfer, Boltzmann transport equation (BTE) emerged as an important
model for predicting the thermal behavior at small scales. Recent advancements in numerical
methods and computational power enabled to solve this equation rigorously by relaxing several
assumptions. But the scattering term of BTE is incredibly complex, still requiring some
simplifications to make the solution possible while preserving relevant physics. One
approximation is the single mode relaxation time (SMRT) approximation. This approximation
assumes that each phonon scatters only to a lattice equilibrium energy. For many materials
near equilibrium and at high enough temperatures, this works well. However, for low
temperatures, and for low dimensional materials like graphene, this model fails to include
phonon scattering due to normal processes, which play an indirect role in thermal resistance. In
this project, we include normal phonon scattering in the BTE through the use of a shifted
equilibrium distribution proposed by Callaway. We solve the non-gray BTE using finite volume
method (FVM) with coupled ordinates method (COMET) to compute the thermal conductivity
and temperature distribution of silicon at different temperatures and length scales. We
implement full phonon dispersion for all polarizations under isotropic assumption. The effect of
including normal processes on the thermal conductivity predictions is rigorously analyzed. Our
results show that ignoring the normal process overpredicts the thermal conductivity – which is a
physically intuitive result. We also observe that the thermal conductivity increases and trends
towards an asymptotic value as the length scale increases. By analyzing the temperature
distribution, we also show that inclusion of normal processes diffuses the energy across the
material – which is an expected result. 

 1. Introduction

With increasing miniaturization of integrated electronic circuits (ICs) following the Moore’s law 1
several challenges pop up in trying to keep up with the trend. One of the major bottlenecks is
the high density localized heat generation in ICs that impair the device performance. In order to
better understand the thermal behavior at those scales it is essential to create robust models
that can accurately predict the device failure. As the device size in ICs these days are less than
32nm where the ballistic behavior dominates, Fourier law cannot be used to make accurate
predictions. One of the widely used alternatives to use the Boltzmann Transport Equation (BTE)
which models the phonon distribution – the major heat carrier in semiconductors – for a given
macroscopic device conditions. Phonon is a quantum of thermal vibration which is considered
as particle in BTE. 
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Several researchers have developed simplified versions of BTE making intuitive assumptions to
make it analytically or numerically solvable. Using these assumptions they were able to predict
the thermal behavior of various materials. One of the most celebrated applications of BTE
developed in early 1950s is to compute the thermal conductivity of a given material as a
function of temperature, composition, and geometry, etc. 2, 3. These analyses consider various
phonon scattering mechanisms responsible for the thermal conductivity of a given material and
models the effect of these scattering rates on the phonon distribution. Widely considered
scattering mechanisms are isotopic scattering, boundary scattering, and three-phonon
scattering (Umklapp (U) and Normal (N) scattering). Isotopic scattering is caused due to the fact
that any given material, by nature, has various isotopic compositions in it. Boundary scattering is
dominant at low temperatures and length scales where the phonons hit the physical boundary of
the material thereby causing resistance to heat flow. Three-phonon scattering takes place when
three phonons interact and results in frequency modification. This process is also called intrinsic
or inelastic scattering which occurs due to the anharmonic nature of interatomic potential. These
mechanisms explain why even perfectly pure crystals do not have infinite thermal conductivity
(In most of the modeling procedures the interatomic potential is assumed harmonic which fail to
show the three-phonon scattering). 

Over the last decade, with the improvement in computational power and numerical methods,
many assumptions are relaxed and the BTE is solved more rigorously using entire phonon
dispersion and relaxation time approximation 4. Common methods to obtain relaxation rates
include fitting the rate expressions to experimental values or perturbation theory 2, 5. While the
influence of all scattering terms on overall thermal conductivity at different temperatures and
geometries has been well analyzed, the three-phonon N-processes have been neglected in
most of the computations. The reason for neglecting normal processes is the premise that they
conserve phonon momentum and hence do not offer thermal resistance. While the above fact is
partially true, N-processes populate phonons in that region that can participate in U-processes
thereby indirectly contributing to the overall thermal conductivity. Neglecting N-processes still
provided reasonable comparison with experiment for materials like Si and Ge because these
are 3D materials and the number of phonons that participate in U-processes are comparably
higher than N-process phonons. But in case of lower dimensional (2D) materials like graphene,
the population of phonons in large-wavevector region is very small and neglecting N-process
provides false prediction of diverging thermal conductivity. This is because of the fact that the
scarce phonon population makes them travel ballistically without many collisions. On the other
hand, it was shown in 6 that on including N-processes the conductivity asymptotes to a constant
value.  

In this paper, we simulate the thermal conductivity of Silicon by including N-processes with full
BTE model using relaxation time approximation and full phonon dispersion. N-process
scattering formulation developed by Callaway 2 is used by strictly enforcing momentum
conservation for N-process phonons and energy conservation for N, and U process phonons.
We only consider isotopic and three-phonon scattering mechanisms in this project. The
simulation is performed on Silicon owing to easy availability of its dispersion curves and
relaxation rates. Isotropic assumption is made in k-space which is reasonable for Si. In our
simulation, we solve the energy form of non-gray BTE 7 simultaneously with overall energy
conservation (N+U processes) to extract energy distribution and temperatures respectively in a
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coupled fashion. This provides quick convergence compared to sequential solution of these
equations (non-gray BTE and energy conservation). Then we perform a detailed study of the
effect of temperature, geometry, and mainly N-process scattering on the overall bulk thermal
conductivity of Si.  

We organize the rest of the paper as follows. In Section 2, we explain the physics of Normal
scattering processes and discuss the situations when their effect would be significant. In
Section 3, we provide a literature review of different models and assumptions used to simulate
and analyze the effect of N-processes. In Section 4, we use Callaway’s thermal conductivity
model to make a first order prediction of thermal conductivity of silicon. Here we briefly discuss
the assumptions made in the model and their implications. In Section 5, we discuss the
numerical method and solution procedure we used for simulating the thermal conductivity. Here
we provide a detailed description of equations involved and the formulation used. In Section 6,
we present and discuss the results of our simulations. We conclude in Section 7 by providing a
direction for possible future work. 

2. Normal process scattering 

Three-phonon scattering 

A three phonon scattering process results in frequency modification of the resultant phonons.
They are also called as inelastic scattering events. These processes can be described by the
energy and momentum relations shown in Figure 1 8. As shown in the figure, these processes
can be classified into Normal and Umklapp processes. A Normal process conserves energy and
momentum whereas Umklapp process only conserves energy. Another illustration in Figure 2
shows why U-processes do not conserve momentum. The Brillouin zone of the given material is
shown in gray. Incoming phonons of wave vector k1 and k2 combine to form a single phonon of
wave vector k3. The left part of the figure shows N-process in which the resultant phonon lies
inside the Brillouin zone; whereas the resultant phonon for U-process (figure on the right side)
has such a high wave vector that it is knocked out of the Brillouin zone. By mapping it back into
Brillouin zone using reciprocal lattice vector G, we can see that the resultant phonon of wave
vector k3 is in the direction opposite to that of k1 and k2. This explains why U-processes
impede phonon momentum and thereby the heat flow. On the other hand, as N-processes do
not impede phonon momentum they do not impede the heat flow directly. But they contribute
indirectly by redistributing overall phonon population which can further participate in U-
processes. 

(Image(three_phonon_events.bmp, 600px) failed - File not found) 

Figure 1: Three-phonon scattering events 8 

(Image(Phonon_nu_process.png, 600px) failed - File not found) 

Figure 2: Illustration of momentum conservation by N and U processes Wikipedia 
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Importance of N-process 

As discussed earlier, given the nature of N-processes it would be worthwhile to think of
situations when N-process contribution is indeed significant. First, we consider how low-
frequency modes interact with high frequency-modes near the Brillouin zone boundary.
Considering the selection rules (see Figure 1) of U-processes, only a mode of some minimum
frequency ?i can participate in them 9. This prohibits the interaction of low-frequency modes
with that of Brillouin zone boundary. But intuitively we know that these modes should somehow
contribute to thermal resistance. This can be explained by the premise that N-processes that
involve these low-frequency modes generate the modes this minimum frequency ?i, which can
then participate in U-processes, thereby providing thermal resistance. One of the other
observations on importance of N-processes is discussed in 6 where it is shown that, with N-
processes, graphene’s thermal conductivity diverges with increasing flake diameter thereby
providing length dependence. But by including N-processes they showed that the conductivity
asymptotes to a constant value. 

3. Literature review of Normal processes  

In this section, we provide a brief literature review of the N-process analysis and their findings.
We begin with Callaway’s phenomenological model for lattice thermal conductivity at low
temperatures 2. In this work, Callaway uses a relaxation time approximation for the scattering
term of BTE, and assumes that all momentum destroying processes (isotopic, boundary, and
Umklapp scattering) tend toward an equilibrium Planck distribution, whereas N processes lead
to a displaced Planck distribution. Using this approximation, the scattering terms can be written
as: 

$${{\left( \frac{\partial N}{\partial t} \right)}_{c}}=\frac{N(\lambda )-N}{{\tau
}_{N}}+\frac{{N}_{0}-N}{{\tau }_{u}}$$ – (1) 

where is the distribution function, is the relaxation time for all normal processes and is the
relaxation time for all other momentum destroying processes, is the equilibrium Planck’s
distribution and is displaced Planck’s distribution defined as 

$$N(\lambda )={{\left[ \exp \left( \frac{\hbar \omega -\lambda .\mathsf{k}}{{k}_{B}T} \right)
\right]}^{-1}}$$ – (2) 

The term is along the direction of temperature gradient and defines the amount of energy
redistributed by N-processes. He computed by enforcing momentum conservation for all N-
process phonons using 

$$\int{{\left( \frac{\partial N}{\partial t} \right)_{N}}\text{k}}{{d}^{3}}k=\int{\frac{N(\lambda )-N}{{\tau
}_{N}}\text{k}{{d}^{3}}k=0}$$ – (3) 

Using the assumptions that only acoustic phonons contribute to thermal conductivity all acoustic
modes can be averaged using a single group velocity, and the relaxation rates for all processes
can be expressed as a function of frequency and temperature he computed a simplified
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expression for thermal conductivity as 

$$k=\frac{{k}_{B}}{2{\pi }^{2}c}({I}_{1}+\beta {I}_{2})$$ 

$${{I}_{1}}=\int_{0}^{{{k}_{B}}\Theta /\hbar }{{{\tau }_{c}}\frac{{{\hbar }^{2}}{{\omega
}^{2}}}{{{k}_{B}}^{2}{{T}^{2}}}\frac{{{e}^{\hbar \omega /{{k}_{B}}T}}}{{{\left( {{e}^{\hbar \omega
/{{k}_{B}}T}}-1 \right)}^{2}}}{{\omega }^{2}}d\omega }$$ 

$${{I}_{2}}=\int_{0}^{{{k}_{B}}\Theta /\hbar }{\frac{{{\tau }_{c}}}{{{\tau }_{N}}}\frac{{{\hbar
}^{2}}{{\omega }^{2}}}{{{k}_{B}}^{2}{{T}^{2}}}\frac{{{e}^{\hbar \omega /{{k}_{B}}T}}}{{{\left(
{{e}^{\hbar \omega /{{k}_{B}}T}}-1 \right)}^{2}}}{{\omega }^{2}}d\omega }$$ 

where is the combined relaxation time given by , is the frequency, is the temperature, and is the
normalized Plancks constant. 

Using the above expression, he computed the thermal conductivity of germanium and compared
it to various experimental observations to obtain fitting constants for relaxation rates. Once the
constants are obtained, he found a striking match between theory and experiments. These
constants are then used to examine the effects of individual processes. The second term in the
thermal conductivity expression is commonly referred as correction term that accounts for
correction due to N-processes. He computed that the value of this term is 10% of the overall
conductivity in case of a pure germanium sample. This model for thermal conductivity has been
rigorously used to compute thermal conductivities for various materials and found to provide
good match at low temperatures 3, 9. 

One of the papers that made improvements to Callaway’s model is Armstrong’s paper using
two-fluid model 9. In this work Armstrong divides phonons into two groups – propagating and
reservoir modes. He assumes that both low and high-frequency phonons participate in N-
processes. High-frequency phonons account for the fact that they can also participate in N-
processes by splitting into phonons of lower frequencies. Instead of Callaway’s displaced
Planck’s distribution, he used two displaced distribution functions for N-process phonons. This
is because the high frequency phonons participating in N-process cannot equilibriate to very low
value of distribution function that low-frequency phonons equilibriate to. He also considers the
effect of different polarizations. Using this assumptions he solves the modified BTE called
Boltzmann-Peierls equation for phonons written as 

$$-\frac{{{N}_{q}}-N(\beta )}{{{\tau }_{NN}}}-\frac{{{N}_{q}}-{{N}_{0}}}{{{\tau
}_{R}}}={{c}_{q}}.\nabla T\frac{d{{N}_{q}}}{dT}$$ – (5) 

where $${{N}_{0}}$$ is the equilibrium distribution, $${{N}_{q}}$$ is the phonon occupation
number, $$N(\beta )$$ is the displaced distribution, $${{c}_{q}}$$ is the group velocity of a given
polarization, $${{\tau }_{NN}}$$ and $${{\tau }_{R}}$$ are the characteristic relaxation
times,$$\nabla T$$ is the temperature gradient across the material. 

Recently, several rigorous computational simulations have been performed by relaxing many
assumptions that were made to simplify the equation. For example, Yunfei Chen et al., 10 used
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Monte Carlo (MC) simulation to solve the BTE to compute the thermal conductivity of silicon
nanowire. In this work, N-processes are included using genetic algorithm to generate the
phonons that satisfy momentum conservation and tend towards displaced equilibrium
distribution defined by Callaway. 

4. Thermal conductivity of Silicon using Callaway’s analysis 

As a first approximation to our simulation, we start with applying Callaway’s model to compute
the thermal conductivity of silicon. Both the terms of thermal conductivity expression are
retained. We use the same relaxation rate expressions used by Callaway given as 

$${{\tau }_{u}}^{-1}=A{{\omega }^{4}}+{{B}_{1}}{{T}^{3}}{{\omega }^{2}}+c/LF$$ – (6) 

where $$A{{\omega }^{4}}$$ represents isotopic scattering; $${{B}_{1}}{{T}^{3}}{{\omega
}^{2}}$$ includes the Umklapp processes with $${{B}_{1}}$$ containing the exponential
temperature factor $${{e}^{-\Theta /aT}}$$ where $$\Theta $$ is the Debye temperature; and 
$$c/LF$$ represents the boundary scattering with $$F$$ being the correction factor due to both
smoothness of the surface and the finite length to thickness ratio of the sample 3. For N-
processes we use $${{\tau }_{N}}^{-1}={{B}_{2}}{{T}^{3}}{{\omega }^{2}}$$. The combined
relaxation rate is then defined as 

$${{\tau }_{c}}^{-1}=A{{\omega }^{4}}+({{B}_{1}}+{{B}_{2}}){{T}^{3}}{{\omega }^{2}}+c/LF$$ – (7) 

The above relaxation rates are used in the thermal conductivity expression to fit the constants 
$$A$$, $$({{B}_{1}}+{{B}_{2}})$$, and $$F$$. Though B1 implicitly has temperature
dependence, we neglect that dependence while fitting. Using the experimental results shown in
Table 1 11, 12 we obtain the following values of fitting constants: 

A = .22e-44 sec3 

B1+B2 = 2.9e-24 sec/deg3 

F = .8 

T(K) k (W/cmK) |T (K) K (W/cmK)
2 .44 200 2.66
4 3.11 300 1.56
6 8.99 400 1.05
8 16.4 500 0.80
10 24.0 600 0.64
20 47.7 700 0.52
30 44.2 800 0.43
40 36.6 900 0.36
50 28.0 1000 0.31
100 9.13 1100 0.28
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150 4.10

Table1: Thermal conductivity measurements of Silicon 11, 12. 

We compare the thermal conductivity obtained by substituting fitted constants into equation
(1.4) and observe a good comparison with experiments at low temperatures, see Figure 3. The
fitted equation is really helpful to quickly investigate the effects of individual scattering events.
For example, we can fix all the constants and just vary the constant to examine the change of
thermal conductivity with various isotope scattering events. The value of A for a given isotopic
concentration can be found from Klemens expression 13 for isotopic scattering. This is how
several researchers exploit this equation to better understand the thermal conductivity behavior
of different materials. 

(Image(Callaways_model_fitting.png) failed - File not found) 

Figure 3: Callaway’s model for thermal conductivity. The constants of relaxation rates are fitted
to match the model with experiment at low temperatures. 

While the above means of using Callaway’s expression would be extremely helpful, our focus
in this project is to better understand the model itself. A small discussion on correction term ( )
and the justification for neglecting it might shed some light in this direction. As we discussed
earlier, Callaway used a combined relaxation rate $${{\tau }_{c}}^{-1}={{\tau }_{N}}^{-1}+{{\tau
}_{u}}^{-1}$$ in his derivation. But as N-processes do not actually contribute to thermal
resistance, the $${{\tau }_{c}}$$ term under predicts the thermal conductivity. Most of the times
the under prediction is very low and hence can be safely neglected. But in some cases, it might
the prediction might differ by around 20%. An example is when isotopic scattering is absent. In
this case, the predicted thermal conductivity with and without the correction term is more than
20% of its overall value. This can be qualitatively seen in Figure 4. (Note that the y-axis here is
logarithmic). So it can be explained that the correction term compensates for the fact that using 
$${{\tau }_{c}}$$ provides more resistance to the conductivity. 

(Image(Callaways_model_with_and_wo_correction.png) failed - File not found) 

Figure 4: Meaning of correction term in Callaway’s model for thermal conductivity. The
correction term compensates the fact that the overall relaxation rate used in Callaway’s model
underpredicts the thermal conductivity 

5. Numerical Method 

All of the governing equations are solved using the Finite Volume method 14. The BTE is a
partial differential equation involving two vector spaces (physical space and wave vector space).
We therefore must discretize both spaces accordingly. With this, we will arrive at a linear system
with at least one equation per discretized physical space and per discretized wave vector
space. 

The physical domain is discretized into several arbitrary convex polyhedral. Here we have
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chosen a square domain which can easily be discretized using a non-uniform structured grid,
shown below: 

(Image(80x80grid.jpg,400px) failed - File not found) 

Figure 5: 80×80 grid used as the physical domain. The side length is unity and is scaled to the
appropriate domain size. 

To discretize the BTE, we integrate over a finite control volume in physical space and wave
vector space then apply the divergence theorem to the convective operator as shown below: 

$$\int\limits_{\Delta \mathsf{K}}{\int\limits_{\Delta V}{\nabla \cdot \left( \mathsf{v}e''
\right)dV{{d}^{3}}\mathsf{K}}}=\int\limits_{\Delta \mathsf{K}}{\int\limits_{\Delta
\mathsf{A}}{e''\mathsf{v}\cdot d\mathsf{A}{{d}^{3}}\mathsf{K}=}}\int\limits_{\Delta
\mathsf{K}}{\int\limits_{\Delta V}{\frac{{{e}^{0}}-e''}{{{\tau }_{U}}}+\frac{e_{\mathsf{\lambda
}}^{0}-e''}{{{\tau }_{N}}}dV{{d}^{3}}\mathsf{K}}}$$ – (8) 

We now apply our discretization. In the wave vector space, a central difference approximation is
made on both sides of the equation, thus the finite volume of k-space appears on both sides
and is dropped. We arrive at the following discrete equation set: 

$$\sum\limits_{f}{{{e}_{f}}''}v\cdot \Delta {{\mathsf{A}}_{f}}+e''\Delta V\left( \tau _{N}^{-1}+\tau
_{U}^{-1} \right)-{{e}^{0}}\frac{\Delta V}{{{\tau }_{U}}}-e_{\mathsf{\lambda }}^{0}\frac{\Delta
V}{{{\tau }_{N}}}=0$$ – (9) 

The energy conservation equation can be rearranged as follows: 

$$\int{\frac{{{e}^{0}}}{{{\tau }_{U}}}{{d}^{3}}\mathsf{K}=}\int{\frac{e''}{{{\tau
}_{U}}}{{d}^{3}}\mathsf{K}}-\int{\frac{e_{\mathsf{\lambda }}^{0}-e''}{{{\tau
}_{N}}}{{d}^{3}}\mathsf{K}}$$ – (10) 

When we apply a second order finite volume discretization we arrive at the following: 

$$\sum{{{e}^{0}}\frac{\Delta \mathsf{K}}{{{\tau }_{U}}}}=\sum{e''\left( \tau _{N}^{-1}+\tau _{U}^{-1}
\right)\Delta \mathsf{K}}-\sum{e_{\mathsf{\lambda }}^{0}\frac{\Delta \mathsf{K}}{{{\tau }_{U}}}}$$
– (11) 

Because of the tight inter-equation coupling, caused by the in-scattering term of the BTE, it is
advantageous to visit each physical cell and solve all points in wave vector space and the
energy conservation equation in a coupled fashion. This procedure is very similar to that shown
in 15, thus we have adopted the same name, the Coupled Ordinates METhod (COMET). In
COMET, the success hinges on the ability to solve all the BTE’s and the energy conservation
equation. To do this, we must determine the common variable which couples all said equations.
The lattice temperature shows up in the function for the equilibrium distribution function, albeit
nonlinear. To extract the lattice temperature equation, we simply linearize the equilibrium
function using a Taylor series expansion: 
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$${{e}^{0,new}}={{e}^{0,old}}+\left( {{T}^{new}}-{{T}^{old}} \right){{\left( \frac{\partial
{{e}^{0}}}{\partial T} \right)}^{old}}$$ – (12) 

The derivative used is a very familiar value, the specific heat of the specific phonon frequency at
the previous iterations temperature. For this procedure, we will construct a matrix which solves
for the correction to the previous values of $$e''$$ and T. In this way, the residual of the
previous iteration act as a source for the correction equation. With this, the BTE and the energy
conservation equations become: 

$$\begin{align} & \sum\limits_{f}{\Delta {{e}_{f}}''}\mathsf{v}\cdot \Delta {{\mathsf{A}}_{f}}+\Delta
e''\Delta V\left( \tau _{N}^{-1}+\tau _{U}^{-1} \right)-\Delta T\frac{\Delta V}{{{\tau }_{U}}}{{\left(
\frac{\partial {{e}^{0}}}{\partial T} \right)}^{old}}={{R}_{BTE}} \\ & -\Upsilon \sum{\Delta e''}\left(
\tau _{N}^{-1}+\tau _{U}^{-1} \right)\Delta \mathsf{K}+\Delta T={{R}_{energy}} \\ & {{\Upsilon
}^{-1}}={{\sum{\left( \frac{\partial {{e}^{0}}}{\partial T} \right)}}^{old}}\frac{\Delta \mathsf{K}}{{{\tau
}_{U}}} \\ \end{align}$$ – (13) 

where $$\Delta e$$ is $${{e}^{new}}-{{e}^{old}}$$ with old and new representing the current and
previous iteration values of simulation. RBTE is the residual for the BTE while Renergy is the
residual for the energy equation. These equations form a linear system of order 
$${{N}_{K}}+1$$, where $${{N}_{K}}$$ is the number if points in wave vector space. The shape
of the matrix is especially convenient, forming an arrowhead pointing to the lower right (all
diagonals populated, last row populated, last column populated) which can be solved directly in 
O(N) operations. 

To keep the advantageous shape of the arrowhead matrix, we do not include the momentum
conservation equation in the coupled solve. The shifted equilibrium value used is the prevailing
value. After the BTE and the energy conservation equation are solved, we use the new value of
the lattice temperature and calculate the lambda vector which we then use to update the shifted
equilibrium energy. 

The solution procedure for COMET begins with the initialization of all values. The first cell is
visited whereby we solve the coupled BTE and energy conservation equation. We use the new
lattice temperature to solve the momentum conservation equation, giving us a new lambda
vector which we use to update the shifted equilibrium energy. Each cell is visited in turn. The
residuals are collected for each cell, and the heat balance is assessed. If the residual has
reached the prescribed tolerance and heat balance is sufficiently satisfied, the procedure exits,
otherwise the procedure begins again. A visual representation of the solution procedure is
shown below. 

(Image(flowchartCOMET.jpg) failed - File not found) 

Figure 6: Flow chart for the COMET solution procedure. 

Simulation Details 

We will use an isotropic Brillouin zone, using the dispersion of silicon in the 100 direction. The
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dispersion is taken using the environment dependent interatomic potential 16. A plot of the
dispersion is shown in Figure 7. To discretize the Brillouin zone, we will use a spherical
coordinate system and divide the Brillouin zone sphere into $${{N}_{\theta }}{{N}_{\phi
}}{{N}_{K}}$$ control volumes. $${{N}_{\theta }}$$ is the number of discretizations in the polar
angle, $${{N}_{\phi }}$$ is the number of discretizations in the azimuthal angle, and 
$${{N}_{K}}$$ is the number of discretizations in the wave vector magnitude. See Figure 8 for a
visual representation. 

(Image(Si_scatt.jpg, 600px) failed - File not found) 

Figure 7: Dispersion relation for silicon in the 100 direction 16. 

The Umklapp scattering rates take the following form: $$\tau _{U}^{-1}=BT{{\omega
}^{2}}{{e}^{{-C}/{T}\;}}$$ . Here the constants B and C are 1.73×10-19 s/K and 137.39 K et al..
The Normal scattering rates take the following form: $$\tau _{N}^{-1}={{B}_{l}}{{\omega
}^{2}}{{T}^{3}}$$ . Here the constant Bl is 2×10-24 s/K3. 

The domain is shown in Figure 9. We will have temperature boundary conditions on all sides of
the domain. Three of the boundaries will have the same temperature, while the fourth boundary
will be 1 Kelvin higher. A schematic of the domain is shown below. 

(Image(spherical.jpg,300px) failed - File not found) 

Figure 8: Schematic of k-space discretization 

(Image(domain.jpg,300px) failed - File not found) 

Figure 9: Sketch of the simulation domain. $${{T}_{2}}={{T}_{1}}+1K$$ . 

To extract the thermal conductivity, we will use the analytical solution for the heat rate through
the bottom wall, shown as follows: 

$$\begin{align} & k=\frac{q\pi }{2\Delta T}{{\left\{ \sum{\frac{{{\left[ {{\left( -1 \right)}^{n+1}}+1
\right]}^{2}}}{n}{{\sinh }^{-1}}\left( n\pi \right)} \right\}}^{-1}} \\ & k\approx 4.53236q \\ \end{align}$$
– (14) 

6. Results and Discussion 

Our predictions of thermal conductivity yield good qualitative results. However, the quantitative
results do not match experiment well. We attribute this to the crude functional representation of
the scattering rates. Because the functional forms we used are curve fits to experimental data,
there was not a good representation of the difference between Umklapp and Normal scattering.
In the curve fits, Normal scattering was ignored and the Umklapp scattering was fit to thermal
conductivity data. To get an accurate representation of the actual scattering rates, a more
fundamental method, i.e., Fermi’s Golden Rule, should be used to distinguish the difference
between Normal and Umklapp scattering. Another reason is that the experimental data is
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measured for bulk thermal conductivity, whereas we are predicting thermal conductivity in
confined (2D) domain. With this, we shall focus on the qualitative trends observed when Normal
scattering is included in the solution of the BTE. 

(Image(0.1um.jpg,600px) failed - File not found) 

Figure 10: Predicted thermal conductivity for silicon at varying temperature for L=0.1um. 

(Image(0.5um.jpg,600px) failed - File not found) 

Figure 11: Predicted Thermal conductivity for silicon at varying temperatures for L=0.5um. 

(Image(1umplot.jpg,600px) failed - File not found) 

Figure 12: Predicted thermal conductivity for silicon at varying temperature for L=1.0um. 

In Figures 10-12 we have the results for the predicted thermal conductivity at varying
temperatures for three different domain sizes. As expected, the conductivity increases, reaches
a peak, and then drops. At low temperatures only low energy phonon modes are active leading
to low thermal transport for a given temperature difference. The temperature is not high enough
to cause appreciable inter-phonon scattering. In this regime boundary scattering is the dominant
scattering mechanism, which has no temperature dependence. As we increase the temperature,
higher energy modes become active giving rise to a higher heat flux. Moreover, at low enough
temperatures the phonons still travel relatively unimpeded due to low scattering rates.
Eventually, inter-phonon scattering begins to take over and the thermal conductivity increase
begins to slow and eventually reach a maximum. After this, the specific heat begins to
asymptote and the inter-phonon scattering continues to increase, thus causing a decrease in
the thermal conductivity.  

As expected, the inclusion of Normal processes shows up as an earlier onset of the degradation
in thermal conductivity, as well as a lower value at the peak. This is because of the indirect
function Normal processes have in the thermal resistance. Normal processes aid in the creation
of wave vectors large enough to participate in Umklapp scattering. Callaway?s model
accomplishes this by redistributing phonons to higher wave vectors in the direction of the
lambda vector such that momentum is conserved. By adding the lambda vector, this allows the
Normal scattering term to more selectively redistribute phonons.  

As the domain size increases, there is a shift in the temperature where the maximum thermal
conductivity occurs. This can be explained intuitively by domain size effects. As we increase the
temperature, smaller domain sizes start with an average Knudsen number (the Knudsen
number is defined as the phonon mean free path divided by the characteristic length of the
domain) higher than that of the larger domains. By starting with a larger Knudsen number,
smaller domains experience ballistic effects over a much larger temperature range. With this,
the scattering rates must be larger (higher temperatures) in order to reach a scenario where a
less than ballistic regime is attained.  
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Figures 13 and 14 show the change in thermal conductivity with respect to the domain size with
and without Normal processes, respectively. As we increase the domain size, the thermal
conductivity increases. We can explain this, again, because of domain size effects. In order to
attain the bulk values for thermal conductivity, a certain size must be reached to a point where
boundary effects are no longer felt. At low domain sizes, the boundaries play too large of a role
for us to compare with a bulk material. As the domain size increases, the thermal conductivity
would asymptote toward the bulk values for thermal conductivity. 

(Image(withN.jpg,600px) failed - File not found) 

Figure 13: Predicted thermal conductivity for varying domain size with the inclusion of Normal
processes. 

(Image(withoutN.jpg,600px) failed - File not found) 

Figure 14: Predicted thermal conductivity with varying domain size without the inclusion of
Normal processes. 

(Image(temp_profile_with_N.jpg,600px) failed - File not found) 

Figure 15: Dimensionless temperature profile along the centerline for varying temperatures. 

(Image(temp_profile_without_N.jpg,600px) failed - File not found) 

Figure 16: Dimensionless temperature profile along the centerline for varying temperatures. 

Figures 15 and 16 show the temperature profile along the line 
$${}^{x}\!\!\diagup\!\!{}_{L}\;=0.5$$ for L=1um with and without Normal processes, respectively.
The addition of Normal processes has a slight effect on the shape of the higher temperature
curves. This is easily seen when looking at the temperature at x=L and x=0. When Normal
processes are included, these temperatures are closer to the boundary value than without. A
decrease in the temperature jump is characteristic of a more diffusive transport regime. The
addition of Normal processes contributes to the redistribution of energy, thus incurring a lower
temperature onset of near equilibrium transport. Another, perhaps more interesting
phenomenon in Figure 15 and 16 is the inverse temperature gradient as you move away from
the top wall. This “hump” disappears with increasing temperature, suggesting this is a ballistic
effect due to geometry. The authors are not entirely sure the explanation for this and leave it to
future work for more insight. 

7. Conclusion 

The effect of Normal processes on the thermal conductivity of silicon was explored by solving
the phonon Boltzmann transport equation using the relaxation time approximation for both
Umklapp scattering and Normal scattering. From our knowledge, this is the first time someone
has implemented Callaway?s approximation for Normal scattering processes into a
deterministic solution to the BTE accounting for full dispersion. For Normal scattering, phonons
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scattered with a shifted equilibrium that was calculated by enforcing momentum conservation for
all Normal processes. Several consequences came from the inclusion of Normal scattering. The
decrease in thermal conductivity occurred at lower temperatures caused by Normal scattering
creating a higher population of high wave vector phonons which directly contribute thermal
resistance. The effect of Normal scattering was exacerbated at larger domain lengths due to a
higher probability of phonon scattering with smaller Knudsen numbers. The inclusion of Normal
processes caused a greater redistribution of phonon energy among phonon modes, which
quickens the onset of a diffusive transport regime. 

Future Work 

The scattering rates used here were taken from curve fits to match experimental bulk thermal
conductivity data. However, using data extracted from curve fitting to thermal conductivity to
again predict thermal conductivity is self fulfilling and doesn’t give much insight. Future work
should use scattering rates taken from a more fundamental source in order to truly understand
the effect of Callaway’s approximation for accounting for Normal scattering processes. 
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