Tags: tight-binding

Description

In solid-state physics, the tight binding model is an approach to the calculation of electronic band structure using an approximate set of wave functions based upon superposition of wave functions for isolated atoms located at each atomic site. The method is closely related to the linear combination of atomic orbitals molecular orbital method used for molecules. Tight binding calculates the ground state electronic energy and position of band gaps for a molecule.

Learn more about quantum dots from the many resources on this site, listed below. More information on Tight binding can be found here.

Teaching Materials (1-6 of 6)

  1. OMEN Nanowire: solve the challenge

    05 Feb 2011 | Contributor(s):: SungGeun Kim

    This document includes a challenging problems for OMEN Nanowire users. It challenges users to establish a nanowire transistor structure such that it satisfy the ITRS 2010 requirements.

  2. OMEN Nanowire Homework Problems

    Teaching Materials | 24 Jan 2011 | Contributor(s):: SungGeun Kim

    OMEN Nanowire homework problems: anyone who has gone through the first-time user guide of OMEN Nanowire and done the examples in the guide should be able to run simulations in these homework problems and find the answers to them.

  3. ABACUS Exercise: Bandstructure – Kronig-Penney Model and Tight-Binding Exercise

    Teaching Materials | 20 Jul 2010 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    The objective of this exercise is to start with the simple Kronig-Penney model and understand formations of bands and gaps in the dispersion relation that describes the motion of carriers in 1D periodic potentials. The second exercise examines the behavior of the bands at the Brillouin zone...

  4. Tight-Binding Band Structure Calculation Method

    Teaching Materials | 08 Jun 2010 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This set of slides describes on simple example of a 1D lattice, the basic idea behind the Tight-Binding Method for band structure calculation.

  5. Computational Nanoscience, Lecture 17: Tight-Binding, and Moving Towards Density Functional Theory

    Teaching Materials | 21 Mar 2008 | Contributor(s):: Elif Ertekin, Jeffrey C Grossman

    The purpose of this lecture is to illustrate the application of the Tight-Binding method to a simple system and then to introduce the concept of Density Functional Theory. The motivation to mapping from a wavefunction to a density-based description of atomic systems is provided, and the necessary...

  6. Semiconductor Device Education Material

    Teaching Materials | 28 Jan 2008 | Contributor(s):: Gerhard Klimeck

    This page has moved to "a Wiki page format" When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic component in all of the electronic devices we use in our daily lives. Electronic systems are...