Tags: thermal transport

Description

Thermal transport at sub-micron scales differs substantially from that at normal length scales. Physical laws for heat transfer, such as Fourier's law for heat conduction, fail when the mean free path of energy carriers becomes comparable to the length scales of interest. This occurs in modern microelectronic devices, where for example, channel dimensions, now below 100 nm in length, are comparable to the mean free path of phonons in silicon at room temperature. Research in the nanoscale thermal transport area addresses novel physics at small length and time scales and novel technologies that exploit this class of physics.

Learn more about nanoscale thermo transport from the resources available on this site, listed below.

Resources (21-40 of 72)

  1. E304 L7.2.2: Nanoscale Heat Transfer - Application: Thermoelectric Generators

    Online Presentations | 06 May 2016 | Contributor(s):: Mehmet Cevdet Ozturk, ASSIST ERC

  2. Thermal Conductivity of III-V Semiconductor Superlattices

    Online Presentations | 25 Jan 2016 | Contributor(s):: Song Mei, Zlatan Aksamija, Irena Knezevic

    IWCE 2015 presentation.  An InGaAs/InAlAs superlattice (SL) on an InP substrate is the mainstream material system for mid- IR quantum cascade lasers (QCL). The thermal conductivity tensor of SLs is critical for energy-efficient performance of QCLs; understanding the relative importance of...

  3. Reproducing results of "Thermal transport in SiGe superlattice thin films and nanowires"

    Papers | 27 Mar 2015 | Contributor(s):: Alejandro Strachan, Jonathan Mark Dunn

    In this document we show how to reproduce results in the paper "Thermal transport in SiGe superlattice thin films and nanowires", Keng-hua Lin, and Alejandro Strachan Physical Review B 87, 115302 (2011) using the nanoMATERIALS nanoscale heat transport tool in nanoHUB....

  4. Thermoreflectance Imaging, Copper Via Reliability and Non- Local Thermal Transport

    Online Presentations | 05 Mar 2015 | Contributor(s):: Ali Shakouri

  5. 1-D Phonon BTE Solver

    Tools | 28 Jul 2014 | Contributor(s):: Joseph Adrian Sudibyo, Amr Mohammed, Ali Shakouri

    Simulate heat transport by solving one dimensional Boltzmann transport equation.

  6. ECE 595E Lecture 18: FEM for Thermal Transport

    Online Presentations | 01 Mar 2013 | Contributor(s):: Peter Bermel

    Outline:Recap from MondayThermal transfer overviewConvectionConductionRadiative transfer

  7. Two-temperature Non-equilibrium Molecular Dynamics Simulator

    Tools | 26 Jul 2012 | Contributor(s):: Yan Wang, Xin Jin, Xiulin Ruan

    Simulate electron-phonon coupled thermal transport across metal-nonmetal interface

  8. nanoMATERIALS nanoscale heat transport

    Tools | 03 Nov 2010 | Contributor(s):: Keng-Hua Lin, Sean Sullivan, Mathew Joseph Cherukara, Alejandro Strachan, Tianli Feng, Xiulin Ruan, Bo Qiu

    Non-equilibrium MD simulations of heat transport in nano-materials

  9. Thermal Transport Across Interfaces

    Courses | 19 Aug 2011 | Contributor(s):: Timothy S Fisher

    These lectures provide a theoretical development of the transport of thermal energy by conduction in nanomaterials, in which material interfaces typically dominate transport. The physical nature of energy transport by two carriers: electrons and phonons--will be explored.

  10. Lecture 9: Introduction to Phonon Transport

    Online Presentations | 17 Aug 2011 | Contributor(s):: Mark Lundstrom

    This lecture is an introduction to phonon transport. Key similarities and differences between electron and phonon transport are discussed.

  11. Lecture 5: Thermoelectric Effects - Mathematics

    Online Presentations | 16 Aug 2011 | Contributor(s):: Mark Lundstrom

    Beginning with the general model for transport, we mathematically deriveexpressions for the four thermoelectric transport coefficients:(i) Electrical conductivity,(ii) Seebeck coefficient (or "thermopower"),(iii) Peltier coefficient,(iv) Electronic heat conductivity.

  12. Tutorial 2: Thermal Transport Across Interfaces - Electrons

    Online Presentations | 15 Aug 2011 | Contributor(s):: Timothy S Fisher

    Outline:Thermal boundary resistanceElectronic transportReal interfaces and measurementsCarbon nanotube interfaces

  13. Tutorial 1: Thermal Transport Across Interfaces - Phonons

    Online Presentations | 30 Jul 2011 | Contributor(s):: Timothy S Fisher

    Outline:Lattice vibrations and phononsThe vibrating stringInterfaces between dissimilar strings: acousticmismatchDiscrete masses and the vibrational eigenspectrumGeneral thermal transport theory

  14. Lecture 4: Thermoelectric Effects-Physical Approach

    Online Presentations | 28 Jul 2011 | Contributor(s):: Mark Lundstrom

    The effect of temperature gradients on current flow and how electrical currents produce heat currents are discussed.

  15. 2011 NCN@Purdue Summer School: Electronics from the Bottom Up

    Workshops | 20 Jul 2011

    click on image for larger versionAlumni Discussion Group: LinkedIn

  16. Additional Tutorials on Selected Topics in Nanotechnology

    Workshops | 23 Mar 2011 | Contributor(s):: Gerhard Klimeck, Umesh V. Waghmare, Timothy S Fisher, N. S. Vidhyadhiraja

    Select tutorials in nanotechnology, a part of the 2010 NCN@Purdue Summer School: Electronics from the Bottom Up.

  17. Tutorial 2: A Bottom-Up View of Heat Transfer in Nanomaterials

    Online Presentations | 23 Mar 2011 | Contributor(s):: Timothy S Fisher

    This lecture provides a theoretical development of the transport of thermal energy by conduction in nanomaterials. The physical nature of energy transport by two carriers—electrons and phonons--will be explored from basic principles using a common Landauer framework. Issues including the quantum...

  18. 2010 NCN@Purdue Summer School: Electronics from the Bottom Up

    Workshops | 20 Apr 2010

    Electronics from the Bottom Up seeks to bring a new perspective to electronic devices – one that is designed to help realize the opportunities that nanotechnology presents.

  19. Thermal Transport in Nanostructured Materials: Working to Improve Efficiency in the Field of Thermoelectrics

    Online Presentations | 19 Jun 2010 | Contributor(s):: Suzanne Singer

    This talk discusses the performance of nanostructured thin films as a potentialmaterial for thermoelectric energy conversion applications, as well as thematerial composition variations that can provide guidelines for finding lowvalues of thermal conductivity.

  20. Research Within Vasileska Group

    Presentation Materials | 28 Jun 2010 | Contributor(s):: Dragica Vasileska

    This presentation outlines recent progress in reseach within Vasileska group in the area of random telegraph noise and thermal modeling, and modeling of GaN HEMTs.