Tags: phonons

Description

In physics, a phonon is a quasiparticle characterized by the quantization of the modes of lattice vibrations of periodic, elastic crystal structures of solids. The study of phonons is an important part of solid state physics because phonons play a major role in many of the physical properties of solids, including a material's thermal and electrical conductivities.

Learn more about quantum dots from the many resources on this site, listed below. More information on Phonons can be found here.

Presentation Materials (1-8 of 8)

  1. Spectral Phonon Relaxation Time Calculation Tool Based on Molecular Dynamics

    07 Aug 2017 | Contributor(s):: Divya Chalise, Tianli Feng, Xiulin Ruan

    Thermal conductivity is an important material property which affects the performance of a wide range of devices from thermoelectrics to nanoelectronics. Information about phonon vibration modes and phonon relaxation time gives significant insight into understanding and engineering...

  2. Fundamentals of Phonon Transport Modeling L1: Introduction

    Presentation Materials | 04 Jan 2017 | Contributor(s):: Alan McGaughey, Xiulin Ruan

    Part of the 2016 IMECE Tutorial: Fundamentals of Phonon Transport Modeling: Formulation, Implementation, and Applications.

  3. Fundamentals of Phonon Transport Modeling L2: MD Simulation, Green Kubo, Direct Method

    Presentation Materials | 04 Jan 2017 | Contributor(s):: Xiulin Ruan, Alan McGaughey

    Part of the 2016 IMECE Tutorial: Fundamentals of Phonon Transport Modeling: Formulation, Implementation, and Applications.

  4. Fundamentals of Phonon Transport Modeling L3: Harmonic Lattice Dynamics, Spectral Methods

    Presentation Materials | 04 Jan 2017 | Contributor(s):: Xiulin Ruan, Alan McGaughey

    Part of the 2016 IMECE Tutorial: Fundamentals of Phonon Transport Modeling: Formulation, Implementation, and Applications.

  5. Fundamentals of Phonon Transport Modeling L4: Anharmonic Lattice dynamics, First Principles

    Presentation Materials | 04 Jan 2017 | Contributor(s):: Alan McGaughey, Xiulin Ruan

    Part of the 2016 IMECE Tutorial: Fundamentals of Phonon Transport Modeling: Formulation, Implementation, and Applications.

  6. Fundamentals of Phonon Transport Modeling L5: Phonon-Boundary and Phonon-Defect Scattering

    Presentation Materials | 04 Jan 2017 | Contributor(s):: Alan McGaughey, Xiulin Ruan

    Part of the 2016 IMECE Tutorial: Fundamentals of Phonon Transport Modeling: Formulation, Implementation, and Applications.

  7. Fundamentals of Phonon Transport Modeling L6: Phonon-Electron Coupling and Non-equilibrium

    Presentation Materials | 04 Jan 2017 | Contributor(s):: Xiulin Ruan, Alan McGaughey

    Part of the 2016 IMECE Tutorial: Fundamentals of Phonon Transport Modeling: Formulation, Implementation, and Applications.

  8. Thermoelectric effects in semiconductor nanostructures: Role of electron and lattice properties

    Presentation Materials | 06 Oct 2010 | Contributor(s):: Abhijeet Paul, Gerhard Klimeck

    This presentation covers some aspects of present development in the field of thermoelectricity and focuses particularly on the silicon nanowires as potential thermoelectric materials. The electronic and phonon dispersions are calculated and used for the calculation of thermoelectric properties in...