Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

All Categories (81-100 of 214)

  1. Quantum transport in semiconductor nanostructures

    04 Mar 2010 | Contributor(s):: Tillmann Christoph Kubis

    PhD thesis of Tillmann Christoph KubisThe main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function...

  2. ECET 499N Lecture 5a: Nanoelectronics III - Datta Lecture Review

    Online Presentations | 19 Feb 2010 | Contributor(s):: Helen McNally

  3. Tillmann Christoph Kubis

    https://nanohub.org/members/41945

  4. Nanoelectronic Modeling Lecture 22: NEMO1D - Motivation, History and Key Insights

    Online Presentations | 07 Feb 2010 | Contributor(s):: Gerhard Klimeck

    The primary objective of the NEMO-1D tool was the quantitative modeling of high performance Resonant Tunneling Diodes (RTDs). The software tool was intended for Engineers (concepts, fast turn-around, interactive) and Scientists (detailed device anaysis). Therefore various degrees of...

  5. Nanoelectronic Modeling Lecture 21: Recursive Green Function Algorithm

    Online Presentations | 07 Feb 2010 | Contributor(s):: Gerhard Klimeck

    The Recursive Green Function (RGF) algorithms is the primary workhorse for the numerical solution of NEGF equations in quasi-1D systems. It is particularly efficient in cases where the device is partitioned into reservoirs which may be characterized by a non-Hermitian Hamiltonian and a central...

  6. ANGEL - A Nonequilibrium Green's Function Solver for LEDs

    Downloads | 07 Feb 2010 | Contributor(s):: sebastian steiger

    Introducing ANGEL, a Nonequilibrium Green’s Function code aimed at describing LEDs.ANGEL uses a description close to the classic NEMO-1D paper (Lake et al., JAP 81, 7845 (1997)) to model quantum transport in a light-emitting diode (LED).ANGEL is the first 1D-heterostructure NEGF to include the...

  7. ECE 495N: Fundamentals of Nanoelectronics Lecture Notes (Fall 2009)

    Teaching Materials | 04 Feb 2010 | Contributor(s):: Mehdi Salmani Jelodar, Supriyo Datta (editor)

    Lecture notes for the Fall 2009 teaching of ECE 495: Fundamentals of Nanoelectronics.

  8. Nanoelectronic Modeling Lecture 20: NEGF in a Quasi-1D Formulation

    Online Presentations | 27 Jan 2010 | Contributor(s):: Gerhard Klimeck, Samarth Agarwal, Zhengping Jiang

    This lecture will introduce a spatial discretization scheme of the Schrödinger equation which represents a 1D heterostructure like a resonant tunneling diode with spatially varying band edges and effective masses.

  9. Nanoelectronic Modeling Lecture 19: Introduction to RTDs - Asymmetric Structures

    Online Presentations | 27 Jan 2010 | Contributor(s):: Gerhard Klimeck

    This lecture explores this effect in more detail by targeting an RTD that has a deliberate asymmetric structure. The collector barrier is chosen thicker than the emitter barrier. With this set-up we expect that the tunneling rate into the RTD from the emitter is faster than the tunneling rate...

  10. Nanoelectronic Modeling Lecture 17: Introduction to RTDs - Relaxation Scattering in the Emitter

    Online Presentations | 27 Jan 2010 | Contributor(s):: Gerhard Klimeck

    Realistic RTDs will have nonlinear electrostatic potential in their emitter. Typically a triangular well is formed in the emitter due to the applied bias and the emitter thus contains discrete quasi bound states.

  11. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    Courses | 25 Jan 2010 | Contributor(s):: Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum wells, quantum dots, nanowires, and ultra-scaled transistors. Three fundamental concepts critical to...

  12. Scattering in NEGF: Made simple

    Papers | 09 Nov 2009 | Contributor(s):: Dmitri Nikonov, Himadri Pal, George Bourianoff

    Formalism for describing electron-phonon scattering, surface scattering, and spin relaxation is dervied for the Keldysh non-equilibrium Green's functions (NEGF) method. Approximation useful for efficient numerical solution are described. The specific case of the nanoMOS simulator is...

  13. Mahesh R Neupane

    Though Mahesh hails from Nepal, he graduated with a Bachelors of Engineering (BE)degree in Computer Science from University of Madras, India, in 2003. In 2005, he received a MS degree in Computer...

    https://nanohub.org/members/38579

  14. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    Workshops | 22 Sep 2009 | Contributor(s):: Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on laboratory session will be available in the afternoons.

  15. Low Bias Transport in Graphene: An Introduction (lecture notes)

    Presentation Materials | 22 Sep 2009 | Contributor(s):: Mark Lundstrom, tony low, Dionisis Berdebes

    These notes complement a lecture with the same title presented by Mark Lundstrom and Dionisis Berdebes, at the NCN@Purdue Summer School, July 20-24, 2009.

  16. Colloquium on Graphene Physics and Devices

    Courses | 22 Sep 2009 | Contributor(s):: Joerg Appenzeller, Supriyo Datta, Mark Lundstrom

    This short course introduces students to graphene as a fascinating research topic as well as to develop their skill in problem solving using the tools and techniques of electronics from the bottom up.

  17. Lecture 2: Graphene Fundamentals

    Online Presentations | 22 Sep 2009 | Contributor(s):: Supriyo Datta

  18. Lecture 6: Graphene PN Junctions

    Online Presentations | 22 Sep 2009 | Contributor(s):: Mark Lundstrom

    Outline:IntroductionElectron optics in grapheneTransmission across NP junctionsConductance of PN and NN junctionsDiscussionSummary

  19. Lecture 3: Low Bias Transport in Graphene: An Introduction

    Online Presentations | 18 Sep 2009 | Contributor(s):: Mark Lundstrom

    Outline:Introduction and ObjectivesTheoryExperimental approachResultsDiscussionSummaryLecture notes are available for this lecture.

  20. From Semi-Classical to Quantum Transport Modeling

    Series | 10 Aug 2009 | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...