Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Teaching Materials (1-11 of 11)

  1. Course on Beyond CMOS Computing

    Teaching Materials | 06 Jun 2013 | Contributor(s):: Dmitri Nikonov

    Complementary metal-oxide-semiconductor (CMOS) field effect transistors (FET) underpinned the development of electronics and information technology for the last 30 years. In an amazing saga of development, the semiconductor industry (with a leading role of Intel) has shrunk the size of these...

  2. Green's Functions Method Explained

    Teaching Materials | 10 Aug 2011 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This is a tutorial on non-equilibrium Green's functions.

  3. OMEN Nanowire: solve the challenge

    Teaching Materials | 05 Feb 2011 | Contributor(s):: SungGeun Kim

    This document includes a challenging problems for OMEN Nanowire users. It challenges users to establish a nanowire transistor structure such that it satisfy the ITRS 2010 requirements.

  4. OMEN Nanowire Homework Problems

    Teaching Materials | 24 Jan 2011 | Contributor(s):: SungGeun Kim

    OMEN Nanowire homework problems: anyone who has gone through the first-time user guide of OMEN Nanowire and done the examples in the guide should be able to run simulations in these homework problems and find the answers to them.

  5. OMEN Nanowire Test Problems

    Teaching Materials | 24 Jan 2011 | Contributor(s):: SungGeun Kim

    This test is for students who have gone through the OMEN Nanowire first-time user guide and other learning materials related to nanowire FETs.

  6. Nanotechnology Animation Gallery

    Teaching Materials | 22 Apr 2010 | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download. Additional animations are also...

  7. ECE 495N: Fundamentals of Nanoelectronics Lecture Notes (Fall 2009)

    Teaching Materials | 04 Feb 2010 | Contributor(s):: Mehdi Salmani Jelodar, Supriyo Datta (editor)

    Lecture notes for the Fall 2009 teaching of ECE 495: Fundamentals of Nanoelectronics.

  8. From Semi-Classical to Quantum Transport Modeling: Quantum Transport - Usuki Method and Theoretical Description of Green's Functions

    Teaching Materials | 10 Aug 2009 | Contributor(s):: Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is provided to the approaches with emphasis on the advantages and disadvantages of each approach. Conclusions...

  9. Resonant Tunneling Diode Simulation with NEGF: First-Time User Guide

    Teaching Materials | 01 Jun 2009 | Contributor(s):: Samarth Agarwal, Gerhard Klimeck

    This first-time user guide for Resonant Tunneling Diode Simulation with NEGF provides some fundamental concepts regarding RTDs along with details on how device geometry and simulation parameters influence current and charge distribution inside the device.NCN@Purdue

  10. Nanoelectronics and the meaning of resistance: Course Handout and Exercises

    Teaching Materials | 02 Sep 2008 | Contributor(s):: Supriyo Datta

    Handout with reference list, MATLAB scripts and exercise problems.

  11. Resonant Tunneling Diodes: an Exercise

    Teaching Materials | 06 Jan 2006 | Contributor(s):: H.-S. Philip Wong

    This homework assignment was created by H.-S. Philip Wong for EE 218 "Introduction to Nanoelectronics and Nanotechnology" (Stanford University). It includes a couple of simple "warm up" exercises and two design problems, intended to teach students the electronic properties...