Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Resources (101-120 of 174)

  1. Matdcal

    Tools | 30 Jan 2008 | Contributor(s):: Kirk Bevan

    Non-equilibrium Green's Function Density Functional Theory Simulator

  2. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    Online Presentations | 07 Mar 2008 | Contributor(s):: Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those structures the behavior of carriers and their interaction with their environment need to be fundamentally...

  3. MCW07 Physics of Contact Induced Current Asymmetry in Transport Through Molecules

    Online Presentations | 25 Feb 2008 | Contributor(s):: Bhaskaran Muralidharan, owen miller, Neeti Kapur, Avik Ghosh, Supriyo Datta

    We first outline the qualitatively different physics involved in the charging-induced current asymmetries in molecular conductors operating in the strongly coupled (weakly interacting) self-consistent field (SCF) and the weakly coupled (strongly interacting) Coulomb Blockade (CB) regimes. The CB...

  4. Exploring Physical and Chemical control of molecular conductance: A computational study

    Online Presentations | 31 Jan 2008 | Contributor(s):: Barry D. Dunietz

  5. Application of the Keldysh Formalism to Quantum Device Modeling and Analysis

    Papers | 14 Jan 2008 | Contributor(s):: Roger Lake

    The effect of inelastic scattering on quantum electron transport through layered semi-conductor structures is studied numerically using the approach based on the non-equilibrium Green's function formalism of Keldysh, Kadanoff, and Baym. The Markov assumption is not made, and the energy coordinate...

  6. Electron-Phonon and Electron-Electron Interactions in Quantum Transport

    Papers | 14 Jan 2008 | Contributor(s):: Gerhard Klimeck

    The objective of this work is to shed light on electron transport through sub-micron semi-conductor structures, where electronic state quantization, electron-electron interactions and electron-phonon interactions are important. We concentrate here on the most developed vertical quantum device,...

  7. Can numerical “experiments” INSPIRE physical experiments?

    Online Presentations | 20 Dec 2007 | Contributor(s):: Supriyo Datta

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.

  8. Engineering at the nanometer scale: Is it a new material or a new device?

    Online Presentations | 06 Nov 2007 | Contributor(s):: Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

  9. MCW07 Modeling Molecule-Assisted Transport in Nanotransistors

    Online Presentations | 06 Nov 2007 | Contributor(s):: Kamil Walczak

    Molecular electronics faces many problems in practical device implementation, due to difficulties with fabrication and gate-ability. In these devices, molecules act as the main conducting channel. One could imagine alternate device structures where molecules act as quantum dots rather than...

  10. MCW07 Simple Models for Molecular Transport Junctions

    Online Presentations | 13 Sep 2007 | Contributor(s):: Misha Galperin, Abraham Nitzan, Mark Ratner

    We review our recent research on role of interactions in molecular transport junctions. We consider simple models within nonequilibrium Green function approach (NEGF) in steady-state regime.

  11. MCW07 Modeling Charging-based Switching in Molecular Transport Junctions

    Online Presentations | 23 Aug 2007 | Contributor(s):: Sina Yeganeh, Misha Galperin, Mark Ratner

    We will discuss several proposed explanations for the switching and negative differential resistance behavior seen in some molecular junctions. It is shown that a proposed polaron model is successful in predicting both hysteresis and NDR behavior, and the model is elaborated with image charge...

  12. Introduction to FETToy

    Series | 03 Jul 2007 | Contributor(s):: James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to the FETToy simulator. A brief introduction to FETToy is presented, followed by voiced presentations featuring the simulator in action. Upon completion of this module, users should be able to use this simulator to gain valuable insight into the...

  13. Introduction to nanoMOS

    Series | 02 Jul 2007 | Contributor(s):: James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to the nanoMOS simulator. A brief introduction to nanoMOS is presented, followed by voiced presentations featuring the simulator in action. Upon completion of this module, users should be able to use this simulator to gain valuable insight into the...

  14. Multi-gate Nanowire FET

    Tools | 18 May 2007 | Contributor(s):: Mincheol Shin

    3D simulator for silicon nanowire field effect transistors with multiple gates

  15. Atomistic Green's Function Method 1-D Atomic Chain Simulation

    Tools | 16 Apr 2007 | Contributor(s):: Zhen Huang, Wei Zhang, Timothy S Fisher, Sridhar Sadasivam

    Calculation of Thermal Conductance of an Atomic Chain

  16. BNC Annual Research Symposium: Nanoscale Energy Conversion

    Online Presentations | 23 Apr 2007 | Contributor(s):: Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  17. CNTFET Lab

    Tools | 13 Mar 2006 | Contributor(s):: Neophytos Neophytou, Shaikh S. Ahmed, POLIZZI ERIC, Gerhard Klimeck, Mark Lundstrom

    Simulates ballistic transport properties in 3D Carbon NanoTube Field Effect Transistor (CNTFET) devices

  18. Highly Efficient Thermal Transport: The Application of Carbon Nanotube Array Interfaces

    Online Presentations | 01 Feb 2007 | Contributor(s):: Baratunde A. Cola

    Carbon nanotubes (CNTs) have received much attention in recent years for their extraordinary properties that through careful engineering may be leverage for the development of numerous advantageous applications. However, to date, only few CNT based applications exist in the market place. So when...

  19. McCoy Lecture: Nanodevices and Maxwell's Demon

    Online Presentations | 04 Oct 2006 | Contributor(s):: Supriyo Datta

    This is a video taped live lecture covering roughly the same material as lecture 1 of "Concepts of Quantum Transport". Video only.

  20. CQT Lecture 4: Coulomb blockade and Fock space

    Online Presentations | 30 Nov 2006 | Contributor(s):: Supriyo Datta

    Objective: To illustrate the limitations of the model described in Lectures 2, 3 and introduce a completely different approach based on the concept of Fock space. I believe this will be a key concept in the next stage of development of transport physics.