Tags: nanowires

Description

A nanowire is a nanostructure, with the diameter of the order of a nanometer. Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important.

Learn more about quantum dots from the many resources on this site, listed below. More information on Nanowires can be found here.

All Categories (141-160 of 160)

  1. What Can the TEM Tell You About Your Nanomaterial?

    Online Presentations | 26 Feb 2007 | Contributor(s):: Eric Stach

    In this tutorial, I will present a brief overview of the ways that transmission electron microscopy can be used to characterize nanoscale materials. This tutorial will emphasize what TEM does well, as well where difficulties arise. In particular, I will discuss in an overview manner how...

  2. Atomistic Alloy Disorder in Nanostructures

    Online Presentations | 26 Feb 2007 | Contributor(s):: Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the...

  3. SPMW Nanomechanics: from nanotechnology to biology

    Online Presentations | 12 Dec 2006 | Contributor(s):: Elisa Riedo

    The development of new materials with size of few nanometers has opened a new field of scientific and technological research. The goal is to develop faster and better communication systems and transports, as well as smarter and smaller nanodevices for biomedical applications. To reach these...

  4. Materials strength: does size matter? nanoMATERIALS simulation toolkit tutorial

    Online Presentations | 01 Feb 2007 | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) is a powerful technique to characterize the fundamental, atomic-level processes that govern materials behavior and is playing an important role in our understanding of the new phenomena that arises in nanoscale and nanostructured materials and result in their unique...

  5. Surprises on the nanoscale: Plasmonic waves that travel backward and spin birefringence without magnetic fields

    Online Presentations | 08 Jan 2007 | Contributor(s):: Daniel Neuhauser

    As nanonphotonics and nanoelectronics are pushed down towards the molecular scale, interesting effects emerge. We discuss how birefringence (different propagation of two polarizations) is manifested and could be useful in the future for two systems: coherent plasmonic transport of near-field...

  6. A Three-Dimensional Quantum Simulation of Silicon Nanowire Transistors with the Effective-Mass Approximation

    Papers | 30 Oct 2006 | Contributor(s):: Jing Wang, POLIZZI ERIC, Mark Lundstrom

    The silicon nanowire transistor (SNWT) is a promising device structure for future integrated circuits, and simulations will be important for understanding its device physics and assessing its ultimate performance limits. In this work, we present a three-dimensional quantum mechanical simulation...

  7. Device Physics and Simulation of Silicon Nanowire Transistors

    Papers | 28 Sep 2006 | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  8. Investigation of the Electrical Characteristics of Triple-Gate FinFETs and Silicon-Nanowire FETs

    Online Presentations | 08 Aug 2006 | Contributor(s):: Monica Taba, Gerhard Klimeck

    Electrical characteristics of various Fin field-effect transistors (FinFETs) and silicon-nanowires were analyzed and compared using a modified three-dimensional self-consistent quantum-mechanical simulator in order to investigate device performance. FinFETs have been proposed to fulfill the...

  9. DNA Nanowires

    Online Presentations | 06 Aug 2006 | Contributor(s):: Margarita Shalaev

    DNA is a relatively inexpensive and ubiquitous material that can be used as a scaffold for constructing nanowires. Our research focuses on the manufacturing of DNA-templated, magnetic nanowires. This is accomplished by synthesizing positively-charged metal nanoparticles that self-assemble along...

  10. Nanotubes and Nanowires: One-dimensional Materials

    Online Presentations | 17 Jul 2006 | Contributor(s):: Timothy D. Sands

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality, quantum confinement, the...

  11. Device Physics and Simulation of Silicon Nanowire Transistors

    Papers | 20 May 2006 | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  12. Nanowire

    Tools | 19 May 2006 | Contributor(s):: Hong-Hyun Park, Lang Zeng, Matthew Buresh, Siqi Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Clemens Heitzinger, Benjamin P Haley

    Simulate 3D nanowire transport in the effective mass approximation with phonon scattering and 3D Poisson self-consistent solution

  13. The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics

    Online Presentations | 11 Apr 2006 | Contributor(s):: Muhammad A. Alam

    In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent work in developing a comprehensive theoretical framework to describe the performance of these "pick-up...

  14. Metal Oxide Nanowires: Synthesis, Characterization and Device Applications

    Online Presentations | 07 Mar 2006 | Contributor(s):: Jia Grace Lu

    Various metal oxide nanowires, such as ZnO, SnO2, Fe2O3, In2O3 and Ga2O3, have been synthesized by chemical vapor deposition method. Their structures and properties are characterized by TEM, SEM, XRD, AFM, photoluminescence, photoconductance, scanning surface potential microscopy, and electrical...

  15. A 3D Quantum Simulation of Silicon Nanowire Field-Effect Transistors

    Online Presentations | 17 Jan 2006 | Contributor(s):: Mincheol Shin

    As the device size of the conventional planar metal oxide semiconductor field effect transistor(MOSFET) shrinks into the deep sub micron regime, the device performance significantly degradesmainly due to the short-channel effect. The silicon nanowire field-effect transistor (SNWFET) isconsidered...

  16. Saumitra Raj Mehrotra

    Saumitra finished his PhD from Purdue University  (Prof. Gerhard Klimeck) in 2014. He received his MS degree in May 2007 from University of Cincinnati working with Prof. K.P....

    https://nanohub.org/members/10858

  17. Nanomaterials: Quantum Dots, Nanowires and Nanotubes

    Online Presentations | 15 Jul 2005 | Contributor(s):: Timothy D. Sands

    What is a quantum dot? What is a nanowire? What is a nanotube? Why are these interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality,...

  18. Nicholas Vargo

    Nicholas Vargo received his masters degree at Purdue University in Electrical and Computer Engineeringin 2009. His main thesis focus is on characterization and analysis of semiconducting nanowire...

    https://nanohub.org/members/9198

  19. Nanotechnology 101 Lecture Series

    Series | Contributor(s):: Joseph M. Cychosz (editor)

    Welcome to Nanotechnology 101, a series of lectures designed to provide an undergraduate-level introduction to nanotechnology. In contrast, the Nanotechnology 501 series offers lectures for the graduate-level and professional audiences.

  20. Nanosystems Biology

    Online Presentations | 10 Sep 2004 | Contributor(s):: James R. Heath

    As we enter the 21st century, we stand at a major inflection point for biology and medicine-the way we view and practice these disciplines is changing profoundly. These changes are being driven by systems biology, a new approach to biology, and which will increasingly transform medicine from...