Tags: multiscale modeling and simulation

Online Presentations (21-40 of 45)

  1. On the Rise of an Electronic Species: Thoughts on the Impending Singularity

    Online Presentations | 29 Nov 2007 | Contributor(s):: Kerry Bernstein

    The human brain is vastly more complex that our best supercomputers; yet it can be argued that both systems evolve towards common underlying solutions to fundamental compute problems. Biologically-inspired electronic technologies already are enabling new products, and inversely, nano-electronics...

  2. Plastic Deformation at Micron and Submicron Scales

    Online Presentations | 28 Nov 2007 | Contributor(s):: Marisol Koslowski

    Most people experiences the way objects plastically deform on a macroscopic scale. From a car crash to the bending of a paper clip plastic deformation occurs in the form of a smooth flow as a response of an applied stress. But due to the constant shrinking on the dimensions of mechanical devices...

  3. Microscale Ionic Wind for Local Cooling Enhancement

    Online Presentations | 26 Oct 2007 | Contributor(s):: David B Go

    As the electronics industry continues to develop small, highly functional, mobile devices, new methods of cooling are required to manage the thermal requirements of the not only the chip but the entire system. Comfortable skin temperatures, small form factors, and limited power consumption are...

  4. BNC Annual Research Symposium: Nanoscale Energy Conversion

    Online Presentations | 23 Apr 2007 | Contributor(s):: Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  5. Computer Simulation of Nanoparticles, Viruses, and Electrical Power-Generating Bacteria

    Online Presentations | 20 Mar 2007 | Contributor(s):: Peter J. Ortoleva

    Models of cells and nanometer-scale biosystems are presented that clarify their physico-chemical characteristics and allow for computer- aided design of therapeutic and nanotechnical devices. Multiscale techniques are used to obtain rigorous, coarse-grained equations for the migration and...

  6. Atomistic Alloy Disorder in Nanostructures

    Online Presentations | 26 Feb 2007 | Contributor(s):: Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the...

  7. Understanding Phonon Dynamics via 1D Atomic Chains

    Online Presentations | 04 Apr 2006 | Contributor(s):: Timothy S Fisher

    Phonons are the principal carriers of thermal energy in semiconductors and insulators, and they serve a vital role in dissipating heat produced by scattered electrons in semiconductor devices. Despite the importance of phonons, rigorous understanding and inclusion of phonon dynamics in...

  8. First Principles-Based Modeling of materials: Towards Computational Materials Design

    Online Presentations | 20 Apr 2006 | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...

  9. The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics

    Online Presentations | 11 Apr 2006 | Contributor(s):: Muhammad A. Alam

    In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent work in developing a comprehensive theoretical framework to describe the performance of these "pick-up...

  10. Thermal Microsystems for On-Chip Thermal Engineering

    Online Presentations | 04 Apr 2006 | Contributor(s):: Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  11. Irradiation and Nanomechanics of Multi-Walled Carbon Nanotubes

    Online Presentations | 23 Mar 2006 | Contributor(s):: Sharon Pregler, Susan Sinnott

    Irradiation of nanotube structures with electron and ion beams has been used to produce functionalized nanotubes and fundamentally new structures, including junctions. Here, we build on previous studies to investigate the low-energy electron and ion (Ar and CF3) beam irradiation of triple walled...

  12. Engineering the Fiber-Matrix Interface in Carbon Nanotube Composites

    Online Presentations | 23 Mar 2006 | Contributor(s):: Sharon Pregler, Yanhong Hu, Susan Sinnott

    Particle depositions on polymer and carbon substrates to induce surface chemical modification are a growing research topic in particle-surface interactions due to localized deposition energy and the high density of molecules impacting the surface. Previous simulations have shown that particle...

  13. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    Online Presentations | 13 Feb 2006 | Contributor(s):: Mark Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...

  14. Nano-Scale Device Simulations Using PROPHET-Part II: PDE Systems

    Online Presentations | 20 Jan 2006 | Contributor(s):: Yang Liu, Robert Dutton

    Part II uses examples toillustrate how to build user-defined PDE systems in PROPHET.

  15. Nano-Scale Device Simulations Using PROPHET-Part I: Basics

    Online Presentations | 20 Jan 2006 | Contributor(s):: Yang Liu, Robert Dutton

    Part I covers the basics of PROPHET,including the set-up of simulation structures and parameters based onpre-defined PDE systems.

  16. Hierarchical Physical Models for Analysis of Electrostatic Nanoelectromechanical Systems (NEMS)

    Online Presentations | 05 Jan 2006 | Contributor(s):: Narayan Aluru

    This talk will introduce hierarchical physical models and efficient computational techniques for coupled analysis of electrical, mechanical and van der Waals energy domains encountered in Nanoelectromechanical Systems (NEMS). Numerical results will be presented for several silicon...

  17. First Principles-based Atomistic and Mesoscale Modeling of Materials

    Online Presentations | 01 Dec 2005 | Contributor(s):: Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics (MD) simulations and iii) mesoscale modeling, together with the strategies to bridge between them. These...

  18. Bandstructure in Nanoelectronics

    Online Presentations | 01 Nov 2005 | Contributor(s):: Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material needs to be included in the device modeling. Atomistic bandstructure effects in resonant tunneling...

  19. On the Reliability of Micro-Electronic Devices: An Introductory Lecture on Negative Bias Temperature Instability

    Online Presentations | 28 Sep 2005 | Contributor(s):: Muhammad A. Alam

    In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with the invention of bipolar transistors several years later. In 1960s, scientists at Fairchild worked...

  20. Modeling and Simulation of Sub-Micron Thermal Transport

    Online Presentations | 26 Sep 2005 | Contributor(s):: Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications include the thermal performance of microelectronic devices, thermo-electric energy conversion, ultra-fast laser machining and many others. It is now accepted that Fourier's...