Tags: band structure

Description

In solid-state physics, the electronic band structure of a solid describes ranges of energy that an electron is "forbidden" or "allowed" to have. It is a function of the diffraction of the quantum mechanical electron waves in the periodic crystal lattice with a specific crystal system and Bravais lattice. The band structure of a material determines several characteristics, in particular its electronic and optical properties. More information on Band structure can be found here.

Teaching Materials (21-25 of 25)

  1. Periodic Potentials and the Kronig-Penney Model

    Teaching Materials | 01 Jul 2008 | Contributor(s):: Dragica Vasileska

    This material describes the derivation of the Kronig-Penney model for delta-function periodic potentials.

  2. Periodic Potentials and Bandstructure: an Exercise

    Teaching Materials | 02 Jul 2008 | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This exercise teaches the students that in the case of strong coupling between the neighboring wells in square and Coulomb periodic potential wells electrons start to behave as free electrons and the gaps that open at the Brillouin zone boundaries become smaller and smaller (thus recovering the...

  3. Computational Nanoscience, Lecture 19: Band Structure and Some In-Class Simulation: DFT for Solids

    Teaching Materials | 30 Apr 2008 | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    In this class we briefly review band structures and then spend most of our class on in-class simulations. Here we use the DFT for molecules and solids (Siesta) course toolkit. We cover a variety of solids, optimizing structures, testing k-point convergence, computing cohesive energies, and...

  4. Computational Nanoscience, Lecture 4: Geometry Optimization and Seeing What You're Doing

    Teaching Materials | 13 Feb 2008 | Contributor(s):: Jeffrey C Grossman, Elif Ertekin

    In this lecture, we discuss various methods for finding the ground state structure of a given system by minimizing its energy. Derivative and non-derivative methods are discussed, as well as the importance of the starting guess and how to find or generate good initial structures. We also briefly...

  5. Homework Assignment: Periodic Potentials

    Teaching Materials | 31 Jan 2008 | Contributor(s):: David K. Ferry

    Using the Periodic Potential Lab on nanoHUB determine the allowed bands for an energy barrier of 5 eV, a periodicity W = 0.5nm, and a barrier thickness of 0.1nm. How do these bands change if the barrier thickness is changed to 0.2 nm?