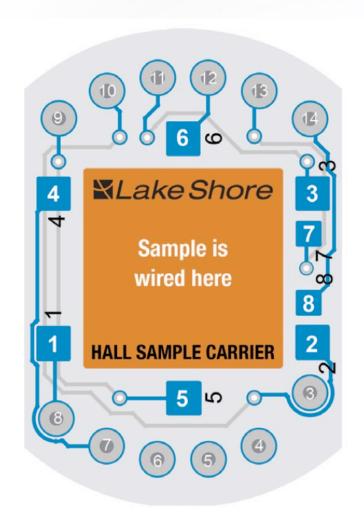
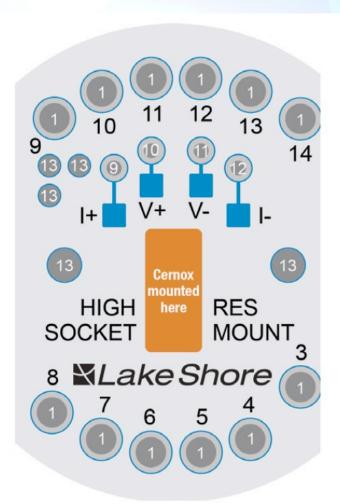
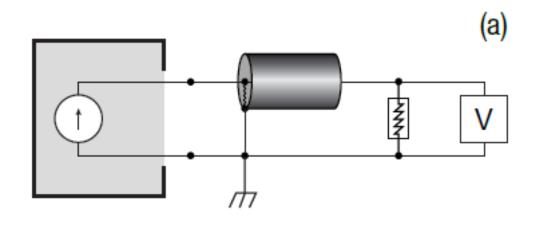


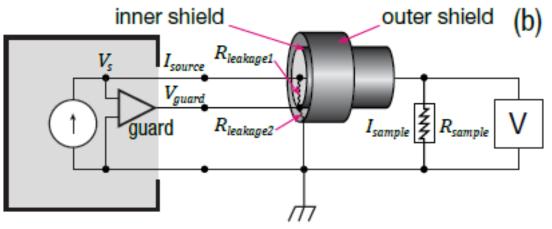
High Impedance Hall Measurements and the Fully Guarded Insert

Jeffrey Lindemuth


A Fully guarded insert for the PPMS


- Fully guarded from instrument to sample for low noise measurements
- Eight guarded connections
- M91-HR low-noise measurements and high resistance measurements up to 200 G Ω
- Electrically isolated common from the PPMS
- Samples mount to consumable Lake Shore sample carrier boards (also pin compatible with Quantum Design sample carrier boards)


Sample and Mounting and Cernox® sensor

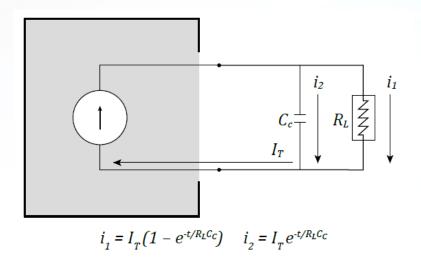


What is a triax cable and why do I use it?

$$I_{
m source} = I_{leakage} + I_{sample}$$

$$= rac{V_{meas}}{R_{leakage}} + rac{V_{meas}}{R_{sample}}$$

$$R_{meas} = rac{V_{meas}}{I_{source}} = rac{R_{sample} \cdot R_{leakage}}{R_{sample} + R_{leakage}}$$


$$V_{\text{source}} = V_{guard}$$
, so $V_{R_{leakage1}} = 0$ and $I_{leakage} = 0$

$$I_{source} = I_{sample}$$

$$R_{meas} = \frac{V_{meas}}{I_{source}} = R_{sample}$$

Why reduce the capacitance?

Do not forget about current reversal

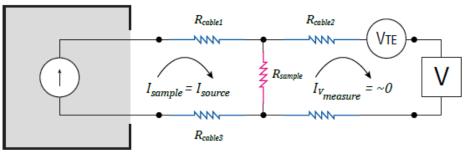


Figure 53 4-wire resistance measurement included cable resistance.

$$V_{cs} = I(R_{cable1} + R_{Sample} + R_{cable2})$$
 $V_{meas}(I_1) = I_1 R_{Sample} + V_{TE}$
 $V_{meas}(I_2) = I_2 R_{Sample} + V_{TE}$
 $R_{sample} = \frac{V_{meas}(I_1) - V_{meas}(I_2)}{I_1 - I_2}$

For more best practice on low noise high resistance measurements download the Hall Measurement Handbook from the Lake Shore web site.

Example measurements

Semi-Insulating GaAs

	Mobility	SE	CC	SE	Resistiviy	SE	Hall voltage	SE	type
	cm²/(V·s)	cm ² /(V·s)	1/cm ²	1/cm ²	ohm/sqr	ohm/sqr	volts	volts	
Ī	2.24E+03	4.76E-03	1.24E+06	2.64E+02	2.25E+09	1.26E+06	-1.80E-01	3.83E-05	n

Low mobility NiO

Mobility	SE	CC	SE	Resistiviy	SE	Hall voltage	SE	type
cm²/(V·s)	cm ² /(V·s)	1/cm ²	1/cm ²	ohm/sqr	ohm/sqr	volts	volts	
0.0457	0.0039	1.66E+11	1.41E+10	8.22E+08		9.32E-04	7.91E-05	р

