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1947: The first transistor
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“The transistor was probably the most important invention of the 20th Century.”
http://www.pbs.org/transistor/

Brattain, Bardeen, and 
Shockley,  Bell Labs.

Ge



1960: The first Si MOSFET
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Complementary MOSFETs
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CMOS inverter
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CMOS logic: 2-input NAND gate
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CMOS speed and power
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Energy band diagrams
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Energy band diagrams
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https://www.pbs.org/wgbh/americanexperience
/features/silicon-timeline-silicon/



Electron transport in MOSFETs:  Micro- to nano-scale
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L = 10 nm

n(x, E)

Ren, Venugopal, Goasguen, Datta, and 
Lundstrom, TED, 50, p. 2185, 2003.

Position along channel (µm) Position along channel (nm)

D. Frank, S. Laux, and M. Fischetti, 
Int. Electron Dev. Mtg., Dec., 1992.
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Energy band treatment of the MOSFET
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Equilibrium energy band diagram
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Now, what effect does a gate voltage have?
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VGS = VDS = 0
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Off-state:  VGS = 0, VDS = VDD
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On-state:  VGS = VDS = VDD

VDS = VDD



VDS > VDSAT (“saturation” region)
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High drain bias
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Output conductance
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2D electrostatics
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(by H. Pal, Purdue, 2012) 



Modern MOSFET structures
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Electron transport in MOSFETs:  Micro- to nano-scale

Lundstrom: February 2024

L = 10 nm

n(x, E)

Ren, Venugopal, Goasguen, Datta, and 
Lundstrom, TED, 50, p. 2185, 2003.

Position along channel (µm) Position along channel (nm)

D. Frank, S. Laux, and M. Fischetti, 
Int. Electron Dev. Mtg., Dec., 1992.

L = 30 nm

EC(x) EC(x)

Energy barrier Energy barrier



Essential physics of the Si MOSFET
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The ultimate Si MOSFET

M. Luisier, 
ETH Zurich / 

Purdue

1)2)

3)4)



Part 2
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Essential Physics of  the Ultimate MOSFET

and

the next 20 years of semiconductor technology



Exploding demand for computing and memory
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The AI “gold rush”



Moore’s Law
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Summary
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“For the past 30 years, we have 
known what to do: make transistors 
smaller. Progress continues at a 
breathtaking pace, but transistor 
scaling is approaching its limit. When 
that limit is reached, things must 
change, but that does not mean that 
Moore’s law has to end.”



Making patterns smaller
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wavelength

 λ = 193 nm

ASML TWINSCAN NXT:2050i

l = 13.5 nm



Apple M2 Max
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January 2023

67 billion transistors

12 core CPU

38 core GPU

16 core neural engine

3.5 GHz clock

TSMC 5 nm process
System on a Chip (SoC)



System on Chip à System in Package (SiP)
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GPUs and HBM
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Multi-core GPU Core DRAM die stack

Silicon interposer

Package PCB

HBM
Stacked  DRAM dies

Connected by Through 
Silicon Vias (TSVs)

16 layers in HBM3

Advanced package

High bandwidth memory closely connected through a Si interposer with a fast, 
multi-core GPU, can supply the CPUs with the data needed for LLMs.



Moore’s Law Forever?
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The next 20 years

Science, 299, 210, 2003 Science, 378, 722, 2022 



CHIPS and Science Act
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$2B NSTC and $3B NAPMP

DoD ME Commons
DARPA NGMM



CHIPS R&D
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NIST
300 mm Baseline CMOS R&D

Tech Centers on 10 topics
Adv. Package Pilot Facility
Tech Centers on 6 topics

Workforce Initiatives        

Digital Twins

$2B $3B $200M



Semiconductors@Purdue
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Institute of 
Hard AI

Birck Nanotechnology Center
(Birck 2.0)

1) NAPMP Technical Center 2) NSTC Technical Center

3) NSTC WFD Center 4) MUSA Institute Digital Twins



Summary
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• Semiconductor technology is foundational and will continue to be.

• Simple ideas are powerful (e.g. zeros and ones and MOSFETs).

• Sustained incremental progress can be transformative.

• Universities can play an important role.


