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Potential of TFET
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Defect-induced degradation
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Defect models — previous works

Conventional TCAD model
e Many fitting parameters for various current mecahnisms (BTBT, TAT)
« Limit of the analysis of the impact of a single defect on NW TFET at nanoscale

Full qguantum transport model for a single defect is necessary

Nonequilibrium Green’s function (NEGF) studies for a single defect

* k-p Hamiltonian + Cubic potential well (M. G. Pala, IEEE TED, 2013)

« Tight-binding (TB) Hamiltonian + Screened Coulomb potential (P. Long, JAR 2018)
e TB Hamiltonian with adjusted TB parmeters (M. Rau, PAh.D. Thesis, 2019)

« Lack of physical defect information - No linkage between
specific defect types and TFET performances

« Charge trapping effects have not been rigorously treated

- Physically-relevant atomic defect Hamiltonians are essential
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Contribution

In this work,

v Physically-relevant interfacial defects whose energy level is located
In the band gap are handled by the first principles approach for
INAs/Al,O; GAA NW TFET

v Full quantum tranport model including electron-phonon scattering
IS employed to exactly capture the trap-assisted tunneling (TAT) and
charge trapping in the defect states

v The impact of gate length (Ls) scaling with a single trap are closely
Investigated
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h-k

DFT defect modeling

Defect-free

oxide have reported that dangling bond and antisite are dominant
, [2]
-dangling bond (Aspg) and As

sources for bandgap defect [1]

Several first-principles studies on the interfacial defects at I11-V/hig
In this work, As

-antisite (As;,)

between InAs/Al,O; nanowire are considered
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[1] J. Robertson et al., JAP, 2015 [2] G. G. Diniz et al., JAP, 2017
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DFT defect modeling

Cross séction (110)
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Side view (110)

Ideal (defect-free) NW supercell

* InAs/Al,O; NW with 2.18 nm x 2.32 nm

As substituting

Bonding broken

 DFT in the basis of LCAQO using the SIESTA package

 Exchange-correlation: GGA-PBE functional

[1] L. G. Ferreira et al., PRB, 2008

[2] L. Lin, JAP, 2013

9

KAIST

IWCN 2021

Computational Nanoelectronics Lab



DFT defect modeling

Stepl: Defect block construction Step2: Device block construction
Periodic cell 11 A 11 A Defect ——Ideal Idea
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Suprecell approximation + Suprecell approximation + DFT-1/2 method
(Defect, 277 atoms) Ideal cells (Device with the defect, 1012 atoms)

« Spacing between the periodic defects > 11 A to eliminate the interaction between
Imaginary defects [1]

« Bandgap underestimation of GGA is corrected by employing the DFT-1/2 method [2]

e Structure relaxed until maximum force < 0.05 eV/A with 3x1x1 Monkhorst-Pack k-grids

[1] L. Lin, JAP, 2013 [2] L. G. Ferreira et al., PRB, 2008
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Mode-space in heterostructures
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[1] M. Shin et al., JAP, 2016 [2] C. Y. Chen, IEEE TED, 2020

 The size of DFT Hamiltonians is prohibitively large for the NEGF simulations
« Mode space method originally developed for DFT Hamiltonian [1] is
extended to heterogeneous system where a single defect Is introduced
—> Our novel method gurantees no unphysical states mentioned in [2]
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NEGF Phonon scattering

Limit of ballistic NEGF simulation for defect study
o Defect density of states is very sharp (Dirac-like LDOS)
- Convergence problem during self-consistent calculations between

NEGF and Poisson’s equations [1]
* Non-physical behavior, such as artificial negative differential resistance,

may occur without inelastic scattering [2]

Electron-phonon scattering (elastic/inelastic) is included using
deformation potential [3] within self-consistent Born approximation

2

D2 knT
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2pw )
. ) : _ [2] M. Bescond, JAP, 2010
Dqc/0pt @coustic/optical deformation potentials [3] C. Klinkert, ACS Nano, 2020
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Simulation setup / parameters

[110] - X Gate length (L) scaling simulation
o e s L is varied from 7 nm to 17 nm
gxeitgee Defect is asummed to be located in
DR R AR d T A X3 L3 LA L LR A E i the middle of the channel
e ohannel S
(“P L L, “L_"('””mr‘?): R, (“ 'We) Defect location (x;) simulation
%xalltdee X7 IS varied from -6 nm to 6 nm
Drain-side defect (x; < 0)
: Xt Source-side defect (x; > 0)
Middle of channel L Is setto be 17 nm

Vpp : 0.4V
Ioge © 10 pA/um
Doping density : 5x10° cm= D,_: 5.8 eV (electron), 1.0 (hole)

EOT : 0.43 nm Dop 1 2.0 eV/A
Lp/Ls : 20 nm /40 nm hw : 30 meV
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Supercell size
Defect-free : 1012 atoms
As;, : 1013 atoms

Aspg - 1012 atoms

Both types of the defect are demonstrated to be sources for the bandgap states
- As,, (deep trap) / Aspg (shallow trap)

Fermi level for each case is higher than the defect level

— Positive charges are trapped in the defect states at nonequilibrium simulations
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Local density of states of the defect states

Defect LDOS largely spreads over the first
nearest neighbor (1-NN) and the second
nearest neighbor (2-NN) As atoms

As,, 2 1-NN: 4 atoms, 2-NN: 6 atoms
Asyg 2 1-NN: 3 atoms, 2-NN: 3 atoms

1-NN atoms = 4.3 A from the interface

2-NN atoms => 7.4 A from the interface

- Trapped charges in the interfacial
defect permeate inside the NW

oHOOOASOAIOINn

These atomic properties of the defects can importantly affect the
electrostatics of the TFET at nanoscale, influencing TFET performance
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Energy-resolved DOS (NEGF)

Tunneling window
Erp < B < Egs
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The defect states are within tunneling window - TAT leakage current

Deep/shallow properties agree with that of the results of DFT calculation

However, 1) the valence band is deformed compared with the defect-free
2) Defect level of As,, is significantly shifted down: 0.7 eV = 0.3 eV
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Density-averaged potential
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* ¢avg IS locally pulled down near the defect cell

- Positive hole carriers are trapped in the defect states
* The effect of the trapped charges is more significant in As, than Asgg
* For Asy, ¢4 at the defect cell is almost unchanged

—> Trapped charges considerably screen the gate field
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Impact of ASDB
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Impact of a defect on L scaling
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The detrimental defect depends on L scaling range
 Deep L scaling (Lg <12 nm) : Aspg
 Moderate L scaling (Lg > 12 nm) : As,,
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Conclusions
« We investigated the impacts of single interfacial defects

that creates bandgap states, As,, and Asyg, on INnAs GAA
NW TFET at nanoscale

« The atomic properties of individual defects are rigorously
iInvestigated employing the DFT defect Hamiltonians
- Charge trapping at interfacial defects can permeate
inside the NW, not negligible for the nanoscale device

« Critical defect limiting scaling depends on L range
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