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CHAPTER

ONE

ABOUT

1.1 Introduction

There are many software tools available to understand and study the transport of charge carriers namely
electrons and hole in materials. Very few tools exist to study the transport of point defects in materials.
Moreover, the chemistry of point defects are addressed in almost no tool.

In our tool we developed a novel approach to study the transport of charge carriers and point defects on
an equal footing along with the incorporation of point defect chemistry.

1.2 Theory

The equation used for describing the transport of charge carriers are

𝜕𝑛

𝜕𝑡
= −∇ ·

−→
𝐽𝑛 + 𝐺𝑛 −𝑅𝑛 (1.1)

−→
𝐽𝑛 = −𝜇𝑛𝑛

−→
𝐸 −𝐷𝑛∇𝑛 (1.2)

𝜕𝑝

𝜕𝑡
= −∇ ·

−→
𝐽𝑝 + 𝐺𝑝 −𝑅𝑛 (1.3)

−→
𝐽𝑝 = 𝜇𝑝𝑝

−→
𝐸 −𝐷𝑝∇𝑝 (1.4)

∇ · (𝜀∇𝜑) = −𝑝 + 𝑛−𝑁𝐷 + 𝑁𝐴 (1.5)

where
−→
𝐽𝑛,

−→
𝐽𝑝 are the flux densities instead of the usual current densities used in semiconductors,

−→
𝐸 is

the electric field, 𝜑 is the electrostatic potential, 𝐺 and 𝑅 are the generation and recombination rates
modeled for radiative, SRH, Auger etc., 𝑁𝐷 and 𝑁𝐴 are the net donor and acceptor concentrations. For
heterostructures, an additional gradient term should be added to the drift-diffusion equation (1.2) and
(1.4). The transport of point defects also follow the similar equations.

We can arrive at the same equations by treating diffusion flux as negative gradient of electro chemcial
potential (𝜇) defined as
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𝜇 = 𝐺0
𝑓 + 𝑞𝜑 + 𝑘𝑇 ln

(︂
𝑢

𝑁𝑠

)︂
(1.6)

where 𝐺0
𝑓 is the formation energy of the species, 𝜑 is the electrostatic potential, 𝑞 is the charge of the

species, 𝑇 is the temperature, 𝑘 is the Boltzmann constant, 𝑢 is the concentration of the species and 𝑁𝑠 is
the maximum number of microstates the species can occupy. The diffusion flux is given as

−→
𝐽 = − 𝐷

𝑘𝑇
𝑢∇𝜇. (1.7)

Please note that we used Einstein relationship between mobility and diffusivity in writing (1.6) and (1.7).
Thus the transport equation are given as

𝜕𝑢𝑖

𝜕𝑡
= −∇ ·

−→
𝐽𝑖 + 𝐺𝑖 −𝑅𝑖 (1.8)

−→
𝐽𝑖 = − 𝐷

𝑘𝑇
𝑢𝑖∇

(︂
𝐺0

𝑓,𝑖 + 𝑞0𝑧𝑖𝜑 + 𝑘𝑇 ln

(︂
𝑢𝑖

𝑁𝑠,𝑖

)︂)︂
(1.9)

∇ · (𝜀∇𝜑) = 𝑞0
∑︁
𝑖

𝑧𝑖𝑢𝑖 (1.10)

where 𝑖 is the index of the species, 𝑞0 is the charge of an electron, 𝑧𝑖 stands for the ionization number of
the charge state with sign. The above equations can be applied to both charge carriers as well as point
defects. The (1.8) requires the computation of generation and recombination rates 𝐺𝑖 − 𝑅𝑖. For charge
carries these rates are well known and can be computed with algebraic expressions. For example if the
charge carriers involve in radiative recombination then the 𝐺𝑖 −𝑅𝑖 is given as

(𝐺𝑖 −𝑅𝑖) |𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 = 𝐵
(︀
𝑛2
𝑖 − 𝑛𝑝

)︀
(1.11)

For trap assisted recombination (SRH) we have

(𝐺𝑖 −𝑅𝑖) |𝑆𝑅𝐻 =
𝑛2
𝑖 − 𝑛𝑝

𝑛+𝑛1

𝐶𝑝
+ 𝑝+𝑝1

𝐶𝑛

(1.12)

where

𝑛1 = 𝑁𝑐𝑒
−𝐸𝐶−𝐸𝑇

𝑘𝑇 (1.13)

𝑝1 = 𝑁𝑣𝑒
𝐸𝑉 −𝐸𝑇

𝑘𝑇 (1.14)

Here 𝑁𝐶 , 𝑁𝑉 are conduction and valence band density of states, 𝐸𝐶 , 𝐸𝑉 and 𝐸𝑇 are conduction band,
valence band and trap energy levels respectively.

2 Chapter 1. About
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For point defects these rate are generally not known. We employ defect chemical reaction formalism
and use chemical reaction kinetics to compute the generation and recombination rate for point defects.
Considering charge carries as a point defect species we can show that generation and recombination rates
obtained from reaction kinetics are equivalent to the general expressions given in (1.11) and (1.12).

The interactions between point defects (including charge carriers) can be represented as defect chemcial
reaction. Considering a general reaction

aA + bB
K𝑓−−⇀↽−−
K𝑏

cC + dD (1.15)

The rate equation can be written as

−1

𝑎

𝑑[𝐴]

𝑑𝑡
= −1

𝑏

𝑑[𝐵]

𝑑𝑡
=

1

𝑐

𝑑[𝐶]

𝑑𝑡
==

1

𝑑

𝑑[𝐷]

𝑑𝑡
= 𝐾𝑓 [𝐴]𝑎[𝐵]𝑏 −𝐾𝑏[𝐶]𝑐[𝐷]𝑑 (1.16)

In our tool we consider only point defect chemical reaction with atmost 2 reactants or atmost 2 products
with stoichiometric coefficients a,b,c and d to be either 1 or 0. For such point defect reactions we show
our method of computing the generation recombination rates. If any of the species is involved in more
than one reaction then the rate equation for that species have contributions from all the invovled reactions.

Consider the following reaction system which represent almost all reactions considered in our tool.

A + B
K𝑓1−−−⇀↽−−−
K𝑏1

C + D (1.17)

A
K𝑓2−−−⇀↽−−−
K𝑏2

E + F (1.18)

Null
K𝑓3−−−⇀↽−−−
K𝑏3

A + G (1.19)

Here species A is invovled in the 3 reactions as shown. Thus for this we write the rate equation as

𝑑[𝐴]

𝑑𝑡
= −𝐾𝑓1[𝐴][𝐵] + 𝐾𝑏1[𝐶][𝐷] −𝐾𝑓2[𝐴] + 𝐾𝑏2[𝐸][𝐹 ] + 𝐾𝑓3 −𝐾𝑏3[𝐴][𝐺] (1.20)

Once this rate equations are formed we systematically rewrite them as

𝑑[𝐴]

𝑑𝑡
= 𝑈𝑇𝑄𝐴𝑈 + 𝑃𝐴𝑈 + 𝐾𝐴 (1.21)

where 𝑈 is a concentration vector (column) of length 7 (total number of species in the system),

𝑈 = ([𝐴], [𝐵], [𝐶], [𝐷], [𝐸], [𝐹 ], [𝐺])
𝑇 (1.22)

𝑄𝐴 is a 7X7 matrix with all zero elements except for

𝑞𝐴12 = 𝑞𝐴21 = −𝐾𝑓1

2
, 𝑞𝐴34 = 𝑞𝐴43 =

𝐾𝑏1

2
, 𝑞𝐴56 = 𝑞𝐴65 =

𝐾𝑏2

2
, 𝑞𝐴17 = 𝑞𝐴71 = −𝐾𝑏3

2
(1.23)

1.2. Theory 3
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𝑃𝐴 is a row vector of length 7 with all elements zero except

𝑝𝐴1 = −𝐾𝑓2 (1.24)

and 𝐾𝐴 is the constant term given as 𝐾𝑓3.

The above representation of rates as (1.21) can be extended to any species and we can write the corre-
sponding 𝑄, 𝑃 , 𝐾 variables as functions of reaction rate constants. For a general reaction system with M
species, the rate equation for the 𝑖 species is given as

𝑑𝑢𝑖

𝑑𝑡
=

𝑀∑︁
𝑘=1

𝑀∑︁
𝑗=1

𝑎𝑖𝑗𝑘𝑢𝑗𝑢𝑘 +

𝑀∑︁
𝑗=1

𝑏𝑖𝑗𝑢𝑗 + 𝑐𝑖‘ (1.25)

for 𝑖 = 1, 2, ...,𝑀 , and a,b,c are the reaction rate constants in which the 𝑖 species is involved.

Then the variables 𝑄𝑖, 𝑃 𝑖,𝐾𝑖 can be calculated as

𝑞𝑖𝑗𝑘 = 𝑞𝑖𝑘𝑗 =

⎧⎨⎩
1
2𝑎

𝑖
𝑗𝑘, if 𝑗 ̸= 𝑘

𝑎𝑖𝑗𝑘, if𝑗 = 𝑘

0, otherwise
(1.26)

𝑝𝑖𝑗 = 𝑏𝑖𝑗 ,𝐾 = 𝑐𝑖. (1.27)

Thus, the generation recombination expression for any point defect species (including free carriers) can
be expressed as

𝐺𝑖 −𝑅𝑖 =
𝑑𝑢𝑖

𝑑𝑡

⃒⃒⃒⃒
⃒
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

= 𝑈𝑇𝑄𝑖𝑈 + 𝑃 𝑖𝑈 + 𝐾𝑖 (1.28)

The net rate as reaction operator 𝑅(𝑈) can be written as

𝑅(𝑈) = 𝑈𝑇𝑄𝑈 + 𝑃𝑈 + 𝐾 (1.29)

where 𝑄 is MxMxM array, 𝑃 is MxM array and 𝐾 is Mx1 array.

The major advantage of writing 𝑅(𝑈) in the above form is that we can calculate the Jacobian of the
reaction operator with the formula

𝐽𝑅(𝑈) = (𝑄 + 𝑄𝑇 )𝑈 + 𝑃 (1.30)

We thus showed you how we calculate the generation reaction term for point defects using the point defect
chemical reaction formalism.

4 Chapter 1. About
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1.2.1 Equivalence

In this section we show you the equivalence of writing radiative process and trap assisted process (SRH)
as defect chemical reaction. The radiative generation and recombination rate and SRH rates are given as
(1.15) and (1.16) respectively.

We represent radiative process as

Null
K𝑓−−⇀↽−−
K𝑏

𝑒−𝑐 + ℎ+
𝑣 (1.31)

where 𝑒−𝑐 and ℎ+
𝑣 denote the free electron and hole in conduction and valence band of the material. Hence

the rate equation is given as

𝑑[𝑒−𝑐 ]

𝑑𝑡
=

𝑑[ℎ+
𝑣 ]

𝑑𝑡
= 𝐾 −𝐾𝑏[𝑒

−
𝑐 ][ℎ+

𝑣 ] = 𝐾𝑏

(︂
𝐾𝑓

𝐾𝑏
− [𝑒−𝑐 ][ℎ+

𝑣 ]

)︂
(1.32)

Thus, if the ratio of forward to backward rate constant is 𝑛2
𝑖 we can easily see that 𝑒𝑞11 and 𝑒𝑞29 are

equivalent. The thermodynamics of reactants and products results in such condition for the ratio. This
will be shown in next section.

The equivalent reaction representing the SRH process in case of acceptor type specis can be written as

A0 K𝑓1−−−⇀↽−−−
K𝑏1

A− + ℎ+
𝑣 ,A

− K𝑓2−−−⇀↽−−−
K𝑏2

A0 + 𝑒−𝑐 (1.33)

The rate equations can be written as

𝑑[𝐴0]

𝑑𝑡
= −𝑑[𝐴−]

𝑑𝑡
= −𝐾𝑓1[𝐴0] + 𝐾𝑏1[𝐴−][ℎ+

𝑣 ] + 𝐾𝑓2[𝐴−] −𝐾𝑏2[𝐴0][𝑒−𝑐 ], (1.34)

𝑑[𝑒−𝑐 ]

𝑑𝑡
= 𝐾𝑓2[𝐴−] −𝐾𝑏2[𝐴0][𝑒−𝑐 ], (1.35)

𝑑[ℎ+
𝑣 ]

𝑑𝑡
= 𝐾𝑓1[𝐴0] −𝐾𝑏1[𝐴−][ℎ+

𝑣 ]. (1.36)

From (1.34) we note that [𝐴0] + [𝐴−] is constant in time (say D). Hence in steady state equilibrium for
[𝐴0] and [𝐴−] we have

[𝐴0] =
𝐾𝑓2 + 𝐾𝑏1𝑝

𝐾𝑓1 + 𝐾𝑓2 + 𝐾𝑏1𝑝 + 𝐾𝑏2𝑛
𝐷, [𝐴0] =

𝐾𝑓1 + 𝐾𝑏2𝑛

𝐾𝑓1 + 𝐾𝑓2 + 𝐾𝑏1𝑝 + 𝐾𝑏2𝑛
𝐷 (1.37)

where [ℎ+
𝑣 ] = 𝑝 and [𝑒−𝑐 ] = 𝑛 is used for notational simplicity.

Using (1.37) in (1.35) and (1.36) with few algebraic simplifications we can write

𝑑𝑛

𝑑𝑡
=

𝑑𝑝

𝑑𝑡
=

𝐾𝑓1𝐾𝑓2 −𝐾𝑏1𝐾𝑏2𝑛𝑝

𝐾𝑓1 + 𝐾𝑓2 + 𝐾𝑏1𝑝 + 𝐾𝑏2𝑛
(1.38)

1.2. Theory 5
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Now if the ratio of the reaction rates is restricted as

𝐾𝑓1

𝐾𝑏1
= 𝑝1 = 𝑁𝑉 𝑒

𝐸𝑉 −𝐸𝑇
𝑘𝑇

𝐾𝑓2

𝐾𝑏2
= 𝑛1 = 𝑁𝑐𝑒

−𝐸𝐶−𝐸𝑇
𝑘𝑇 (1.39)

then (1.38) can be simplified further as

𝐺−𝑅 =
𝑛2
𝑖 − 𝑛𝑝

𝑛+𝑛1

𝐾𝑏1
+ 𝑝+𝑝1

𝐾𝑏2

𝐷 (1.40)

which is equivalent to (1.16). The thermodynamics of reactants and products will result in (1.39) which
will be shown in the next section. A similar equivalence can be shown for donor type centers as well.

1.2.2 Thermodynamic Relationship between Forward and Backward Rate Con-
stants

Consider a general reaction

𝑉∑︁
𝑖=1

𝑥𝑖𝑋𝑖

K𝑓−−⇀↽−−
K𝑏

𝑀∑︁
𝑗=1

𝑦𝑗𝑌𝑗 (1.41)

with N reactants and M products. At thermodynamic equilibrium the difference in the chemical potential
of reactants and products should be zero. Thus, we have

∆𝑟𝐺 =

𝑁∑︁
𝑖

𝑥𝑖𝜇𝑋𝑖
−

𝑀∑︁
𝑗=1

𝑦𝑗𝜇𝑌𝑗 (1.42)

where ∆𝑟𝐺 is the Gibb’s free energy change of reaction, 𝜇 is the chemical potential of the species which
can be written from (1.6) neglecting the electrostatic potential as

𝜇𝑋𝑖
= 𝐺0

𝑓,𝑋𝑖
+ 𝑘𝑇 ln

(︂
[𝑋𝑖]

𝑁𝑠,𝑋𝑖

)︂
(1.43)

Thus, at equilibrium we have

𝑁∑︁
𝑖=1

(︃
𝑥𝑖𝐺

0
𝑓,𝑋𝑖

+ 𝑘𝑇 ln

(︃
[𝑋𝑖]

𝑥𝑖
𝑒𝑞

𝑁𝑥𝑖

𝑠,𝑋𝑖

)︃)︃
=

𝑀∑︁
𝑗=1

(︃
𝑦𝑗𝐺

0
𝑓,𝑌𝑗

+ 𝑘𝑇 ln

(︃
[𝑌𝑗 ]

𝑦𝑗
𝑒𝑞

𝑁
𝑦𝑗

𝑠,𝑌𝑗

)︃)︃
(1.44)

Upon simplification we get

∏︀𝑀
𝑗=1[𝑌𝑗 ]

𝑦𝑗
𝑒𝑞∏︀𝑁

𝑖=1[𝑋𝑖]
𝑥𝑖
𝑒𝑞

=

∏︀𝑀
𝑗=1 𝑁

𝑦𝑗

𝑠,𝑌𝑗∏︀𝑁
𝑖=1 𝑁

𝑥𝑖

𝑠,𝑋𝑖

𝑒−
Δ𝑟𝐺0

𝑘𝑇 (1.45)

where ∆𝑟𝐺
0 is the standard enthalpy change of reaction or standard reaction Gibb’s energy defined as

6 Chapter 1. About
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∆𝑟𝐺
0 =

𝑀∑︁
𝑗=1

𝑦𝑗𝐺
0
𝑓,𝑌𝑗

−
𝑀∑︁
𝑖=1

𝑥𝑖𝐺
0
𝑓,𝑋𝑖

(1.46)

We also know that at equilibrium we have

𝐾𝑓

𝑁∏︁
𝑖=1

[𝑋𝑖]
𝑥𝑖𝑒𝑞 −𝐾𝑏

𝑀∏︁
𝑗=1

[𝑌𝑗 ]
𝑦𝑗
𝑒𝑞 = 0 (1.47)

Hence using (1.45) and (1.47) we can write

𝐾𝑓

𝐾𝑏
=

∏︀𝑀
𝑗=1 𝑁

𝑦𝑗

𝑠,𝑌𝑗∏︀𝑁
𝑖=1 𝑁

𝑥𝑖

𝑠,𝑋𝑖

𝑒−
Δ𝑟𝐺0

𝑘𝑇 (1.48)

Therefore, the reaction rate constants should have a fixed ration. Applying this to the reaction (1.31) we
have

𝐾𝑓

𝐾𝑏
= 𝑁𝑠,𝑒−𝑐

𝑁𝑠,ℎ+
𝑣

exp

(︃
−
𝐺0

𝑓,𝑒−𝑐
𝐺0

𝑓,ℎ+
𝑣

𝑘𝑇

)︃
(1.49)

The number of microstates for electrons in conduction band and hole is valence band are 𝑁𝐶 and 𝑁𝑉

respectively. The formation energies of electrons in conduciton band and holes in valence band referenced
from vacuum level is

𝐺0
𝑓,𝑒−𝑐

= −𝜒,𝐺0
𝑓,ℎ+

𝑣
= 𝜒 + 𝐸𝑔 (1.50)

where 𝜒 is the electron affinity of the material and 𝐸𝑔 is the band gap of the material. Thus, we have the
ratio as

𝐾𝑓

𝐾𝑏
= 𝑁𝐶𝑁𝑉 exp

(︂
−𝐸𝑔

𝑘𝑇

)︂
(1.51)

Considering the reactions in (1.33) we have

𝐾𝑓1

𝐾𝑏1
=

𝑁𝑠,𝐴−𝑁𝑠,ℎ+
𝑣

𝑁𝑠,𝐴0

exp

(︃
−
𝐺0

𝑓,𝐴− + 𝐺0
𝑓,ℎ+

𝑣
−𝐺0

𝑓,𝐴0

𝑘𝑇

)︃
(1.52)

𝐾𝑓2

𝐾𝑏2
=

𝑁𝑠,𝐴0𝑁𝑠,𝑒−𝑐

𝑁𝑠,𝐴−
exp

(︃
−
𝐺0

𝑓,𝐴0 + 𝐺0
𝑓,𝑒−𝑐

−𝐺0
𝑓,𝐴−

𝑘𝑇

)︃
(1.53)

where the formation energies are given as

𝐺0
𝑓,𝐴0 = 𝐸𝑓,𝐴0 − 𝜒− 𝐸𝑔,

𝐺0
𝑓,𝐴− = 𝐸𝑓,𝐴0 − 𝑠𝑖𝑔𝑛(𝐴−)𝐸𝑇 − 𝜒− 𝐸𝑔

𝐺0
𝑓,𝑒−𝑐

= −𝜒,𝐺0
𝑓,ℎ+

𝑣
= 𝜒 + 𝐸𝑔

(1.54)

1.2. Theory 7
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Here 𝑠𝑖𝑔𝑛(𝐴−) is the sign of the charge on the species, 𝐸𝑇 is the trap level (transition level from 0/-)
with respect to vacuum and 𝐸𝑓,𝐴0 is the defect formation energy of neutral species calculated through
Density Functional Theory (DFT) referenced with respect to valence band. Assuming that the microstates
for neutral and charged species are nearly same, we get

𝐾𝑓1

𝐾𝑏1
= 𝑁𝑉 exp

(︂
−𝜒 + 𝐸𝑔 + 𝐸𝑇

𝑘𝑇

)︂
= 𝑁𝑉 exp

(︂
𝐸𝑉 − 𝐸𝑇

𝑘𝑇

)︂
𝐾𝑓2

𝐾𝑏2
= 𝑁𝐶 exp

(︂
−−𝜒− 𝐸𝑇

𝑘𝑇

)︂
= 𝑁𝐶 exp

(︂
−𝐸𝐶 − 𝐸𝑇

𝑘𝑇

)︂ (1.55)

where we have used the relations

𝐸𝐶 = −𝜒,𝐸𝑉 = −𝜒− 𝐸𝑔 (1.56)

Hence, for SRH process, the thermodynamics guarantees the equivalence as a chemical defect reaction.

1.3 Models

We have presented the theory behind our approach and the differential equations involved in the transport
of charge carries and point defects. In this section we give the models we have employed in our solver.

1.3.1 Reaction Models

Although thermodynamics provides the ratio of forward and backward rate constants, we still have to
find either one of the rate constants. For this we use reaction models that provide the rate constant of the
reaction either forward rate or backward rate. Consider a general reaction

AzA + BzB K−−→ CzC + dDzD (1.57)

where 𝑑 can be 0 or 1 with 0 being single product reaction and 1 being two product reaction, 𝑧𝑋 is the
ionization of species X. The diffusion-controlled reaction rate constant for the above reaction is given as

𝐾 = 4𝜋𝑅𝑐𝑎𝑝𝑡(𝐷𝐴 + 𝐷𝐵) exp

(︂
−𝐸𝐴

𝑘𝑇

)︂
(1.58)

where 𝑅𝑐𝑎𝑝𝑡 is the capture radius, 𝐷𝑋 is the diffusivity of species X, 𝐸𝐴 is the activiation energy of
reaction ( 𝐸𝐴 ≥ 0) representing the probability of a collision resulting in the formation of product.

The various types of reaction models used in the solver are as given below

• Diffusion Limited with Attraction Model:

𝐾 = 𝑞
|𝑧𝐴𝑧𝐵 |
𝜀𝑘𝑇

(𝐷𝐴 + 𝐷𝐵) where model is applicable only if 𝑧𝐴 × 𝑧𝐵 < 0 (1.59)

• Capture Radius Limited Model:

𝐾 = 4𝜋𝑅𝑐𝑎𝑝𝑡(𝐷𝐴 + 𝐷𝐵) where model is applicable only if 𝑧𝐴 × 𝑧𝐵 ≥ 0 (1.60)

• Capture Cross Section Limited Model:

8 Chapter 1. About



PVRD-FASP Documentation, Release 0.9

𝐾 = 𝜎𝑒/ℎ𝑣𝑡ℎ,𝑒/ℎ where model is applicable whenever one reactant
is either electron or hole and only if𝑧𝐴 × 𝑧𝐵 ≥ 0

(1.61)

• Thermal Generation-Recombination Model:

𝐾 = 𝐵0 where model is applicable only when the reactants are both electron
and hole. Here 𝐵0 is the band to band recombination rate

coefficient of the material
(1.62)

• Barrier Limited Model:

𝐾 = 𝜈 exp

(︂
−𝐸𝑏

𝑘𝑇

)︂
where model is applicable with sigle reactant and single product

Here 𝜈 is the attempted frequency
𝐸𝑏 is the reaction activation barrier

(1.63)

1.3.2 Diffusion Models

The diffusion coefficient of species is assumed to have Arrhenius relationship with temperature given as

𝐷(𝑇 ) = 𝐷0 exp

(︂
−𝐸𝐷

𝑘𝑇

)︂
The diffusion coefficient of free carriers are assumed to follow Einstein relationship given as

𝐷𝑒/ℎ = 𝜇𝑒/ℎ
𝑘𝑇

𝑞

The mobility of free carriers are assumed to follow the relationship

𝜇𝑒/ℎ = 𝜇𝑒/ℎ,300𝐾

(︂
𝑇

300

)︂ 3
2

1.3.3 Band Gap Models

We use Varshni model for the temperature dependence of band gap given as

𝐸𝑔(𝑇 ) = 𝐸0 − 𝛼

(︂
𝑇 2

𝑇 + 𝛽

)︂
where 𝐸0 is the band gap at 0K, 𝛼 and 𝛽 are fitting parameters.

1.3.4 Density of States Models

For charge carriers the density of states are given as

2

(︂
2𝜋𝑚𝑒𝑓𝑓,𝑒/ℎ𝑚0𝑘𝑇

ℎ2

)︂ 3
2

For defect species the density of microstate are given as

𝑁𝑠 = 𝑔𝑎𝑡𝑜𝑚 × 𝑔𝑒𝑙𝑒𝑐 ×𝑁0

where 𝑔𝑎𝑡𝑜𝑚, 𝑔𝑒𝑙𝑒𝑐 are the atomic and electronic degeneracy factors, 𝑁0 is the lattice site density of the
host material. The sites available to the point defects in the host material depends on the host crystal
structure, size of the point defect etc. Hexagonal site, tetrahedral site etc are examples of lattice sites in
zincblende crystal structure.

1.3. Models 9
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1.3.5 Formation Energy of Species Models

For charge carriers the formation energy is given as

∆𝐻𝑓 (𝑒) = −𝜒,∆𝐻𝑓 (ℎ) = 𝜒 + 𝐸𝑔(𝑇 )

For point defect species the formation energy is

∆𝐻𝑓 (𝑋𝑧𝑥) = ∆𝐻𝑓 (𝑋0) − 𝑠𝑖𝑔𝑛(𝑧𝑥) *
(︂

𝑇

300
∆𝐸𝑇 − 𝜒− 𝐸𝑔(𝑇 )

)︂

This completes the description of the solver.
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