

Network for Computational Nanotechnology (NCN)

Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP

NCN First Time User Guide to Quantum Dot Lab*

NCN @ Purdue University West Lafayette, IN, USA

*http://www.nanohub.org/tools/qdot/.

**email:kim568@purdue.edu

Table of Contents

- Introduction 3
- Input Interface 5
- Output Interface 13
- Simulation engine behind the tool: NEMO 5 18
- References 19

Introduction

- The quantum dot lab is a tool that solves the Schrodinger equation for an electron in a quantum dot.
- The quantum dot lab yields the wavefunction, the electron energy levels, and the optical transition rates/absorption strength of an electron.

 A detailed introduction to the quantum dot lab also can be found at https://www.nanohub.org/resources/4194.
PURDUE StingGeun Kim

First Look

Input Interface

- Number of states
- Device Structure
 - » Geometry
 - » Effective mass/Discretization/Energy gap
- Light Source
 - » Light polarization
 - » Optical parameters
 - » Sweep

The Number of States

- First, choose the number of states: the default value is Number of States: 7
- How many states do you want to see in the output?
- Do not choose an unnecessarily large number: it increases run time.
- The output below shows that up to 7 energy levels are viewable, if number of states is chosen to be 7 in the input.

Surface Passivation

- Surface passivation option passivates the surface so that the electron feels an infinite potential barrier at the surface of quantum dot.
 - » Surface passivation forces the electron wave function at the surface of the quantum dot to go to zero.
 - » If "no" is chosen, then the wavefunction is allowed to leak out of the quantum dot. The result is illustrated in the following figures:

Device Structure: Geometry

 The geometry can be set by choosing x, y, and z dimensions for each of the configurations shown below.

Other Device Structure Parameters

Light Source: Polarization/Optical parameters

- The light source is shined on the quantum dot to see the optical properties.
- Users can choose the angles theta θ or phi Φ as shown in the figure to the top left.
- Fermi level: relative to the lowest energy level
- Temperature: ambient temperature
- Detailed description: <u>https://www.nanohub.org/reso</u> urces/4194

Light Source: State Broadening

- State broadening determines
 - » the broadening width of the energy states in the quantum dot
 - » the width of the Lorentzian shape of optical absorption

Light Source: Sweep

Output Interface

- 3D wavefunctions: 3D plot of the electron wavefuction in a quantum dot
- Energy states: the energy levels of the electron in a quantum dot
- Light and dark transitions: the transition strength of electrons when light shines to a quantum dot
 - » X-polarized: when X-polarized light is shined
 - » Y-polarized: when Y-polarized light is shined
 - » Z-polarized: when Z-polarized light is shined
- Absorption: the absorption strength
- Absorption sweep: the absorption strength plot when the angles θ,φ,
 Fermi level, or temperature is swept.
- Integrated absorption: the integrated (the area under the graph of) absorption for each sweeping variable.

Optical Properties

Refer to the introductory tutorial for more examples of the optical properties https://www.nanohub.org/resources/4194

3D wavefunctions

Energy States

States Order	Notations in Qdot Lab
1 st state	Ground state
2 nd state	1st excited state
3 rd state	2 nd excited state

Magnified view of the selected portion

Optical Properties: Transition Strength

From the geometry, expect that the p_z-type orbital has the lowest energy. (Inverse order to the real space dimensions.)

s to p_z orbital transition can be observed by **Z-polarized light**

The first large transition comes exactly at the transition energy from s to p₇ type orbital.

PURDUE SungGeun Kim

Optical Properties: Absorption

Each point is calculated by integrating each absorption graph (note that the color of each point matches the color of the line in the left figure)

Simulation Engine behind the tool: NEMO 5

- Right now, the quantum dot lab's engine is NEMO 5.
- NEMO 5 is a Nano Electronic MOdeling tool.^[2]
- Quantum dot lab tool mainly uses the following parts of NEMO5
 - » Structure construction
 - » Schrodinger solver
 - » Optical properties solver

[2] https://engineering.purdue.edu/gekcogrp/research-group/SebastianSteiger/quad_NEMO5.pdf

References

- [1] Gerhard Klimeck, Introduction to Quantum Dot Lab: https://www.nanohub.org/resources/4194
- [2] Sebastian Steiger, NEMO 5 quad chart:
 https://engineering.purdue.edu/gekcogrp/research-group/SebastianSteiger/quad_NEMO5.pdf

