Tags: thermal transport

Description

Thermal transport at sub-micron scales differs substantially from that at normal length scales. Physical laws for heat transfer, such as Fourier's law for heat conduction, fail when the mean free path of energy carriers becomes comparable to the length scales of interest. This occurs in modern microelectronic devices, where for example, channel dimensions, now below 100 nm in length, are comparable to the mean free path of phonons in silicon at room temperature. Research in the nanoscale thermal transport area addresses novel physics at small length and time scales and novel technologies that exploit this class of physics.

Learn more about nanoscale thermo transport from the resources available on this site, listed below.

Resources (41-60 of 72)

  1. Molecular Sensors for MEMS

    Online Presentations | 10 Dec 2009 | Contributor(s):: John P. Sullivan

    This seminar will cover the issues involved in using molecular sensors in MEMS and their application to microchannels, supersonic micronozzles, microjet impingement, microturbines and unsteady fluidic actuators.

  2. MIT Tools for Energy Conversion and Storage

    Tools | 13 Sep 2009 | Contributor(s):: Jeffrey C Grossman, Joo-Hyoung Lee, Varadharajan Srinivasan, Alexander S McLeod, Lucas Wagner

    Atomic-Scale Simulation Tools to Explore Energy Conversion and Storage Materials

  3. Illinois ME 498 Introduction of Nano Science and Technology, Lecture 10: Thermal and Electric Conduction in Nanostructures

    Online Presentations | 05 Oct 2009 | Contributor(s):: Nick Fang, Omar N Sobh

    Thermal and Electric Conduction in Nanostructures Topics: Back to Constitutive Equations Coupled Heat and Electron Conduction Thermoelectric Cooling Principle of Thermoelectric Effect Comparison of Different Materials Challenges in Efficiency Nanoscale Thermoelectricity

  4. Metal Oxide Nanowires as Gas Sensing Elements: from Basic Research to Real World Applications

    Online Presentations | 21 Sep 2009 | Contributor(s):: andrei kolmakov

    Quasi 1-D metal oxide single crystal chemiresistors are close to occupy their specific niche in the real world of solid state sensorics. Potentially, the major advantage of this kind of sensors with respect to available granular thin film sensors will be their size and stable, reproducible and...

  5. Illinois ECE 598EP Lecture 3.1 - Hot Chips: Electrons and Phonons

    Online Presentations | 17 Feb 2009 | Contributor(s):: Eric Pop, Omar N Sobh

    Electrons and Phonons

  6. Illinois ECE 598EP Lecture 1 - Hot Chips: Atoms to Heat Sinks

    Online Presentations | 29 Jan 2009 | Contributor(s):: Eric Pop

    IntroductionContent: The Big Picture Another CPU without a Heat Sink Thermal Management Methods Impact on People and Environment Packaging cost IBM S/390 refrigeration and processor packaging Intel Itanium and Pentium 4packaging Graphics Cards Under/Overclocking Environment A More Detailed Look...

  7. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    Tools | 18 Oct 2008 | Contributor(s):: Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

  8. Quantum and Thermal Effects in Nanoscale Devices

    Online Presentations | 18 Sep 2008 | Contributor(s):: Dragica Vasileska

    To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the self-consistent fields and the hydrodynamic equations for acoustic and optical phonons. The phonon...

  9. nanoJoule

    Tools | 28 May 2008 | Contributor(s):: Feifei Lian, Feifei Lian, Feifei Lian

    This tool performs a self-consistent simulation of the current-voltage curve of a metallic single-wall carbon nanotube with Joule heating.

  10. BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation

    Online Presentations | 04 Jun 2008 | Contributor(s):: Jayathi Murthy

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  11. Nanoscale Opto Thermo Electric Energy Conversion Devices

    Online Presentations | 28 May 2008 | Contributor(s):: Ali Shakouri

    We review solid-state devices that allow direct conversion of heat into electricity. We describe fundamental and practical limits of conventional thermoelectric materials. Novel metal-semiconductor nanocomposites are developed where the heat and charge transport are modified at the atomic level....

  12. Heat Transfer across Solid Contacts Enhanced with Nanomaterials

    Online Presentations | 11 Feb 2008 | Contributor(s):: Timothy S Fisher

    This presentation will describe thermal transport processes at solid-solid material interfaces. An overview of applications in the electronics industry will serve to motivate the subject, and then the basic diffusive constriction theory will be developed. The addition of carbon nanotube arrays to...

  13. An Experimentalists’ Perspective

    Online Presentations | 19 Dec 2007 | Contributor(s):: Arunava Majumdar

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.

  14. Microscale Ionic Wind for Local Cooling Enhancement

    Online Presentations | 26 Oct 2007 | Contributor(s):: David B Go

    As the electronics industry continues to develop small, highly functional, mobile devices, new methods of cooling are required to manage the thermal requirements of the not only the chip but the entire system. Comfortable skin temperatures, small form factors, and limited power consumption are...

  15. MCW07 Simple Models for Molecular Transport Junctions

    Online Presentations | 13 Sep 2007 | Contributor(s):: Misha Galperin, Abraham Nitzan, Mark Ratner

    We review our recent research on role of interactions in molecular transport junctions. We consider simple models within nonequilibrium Green function approach (NEGF) in steady-state regime.

  16. Electron Emission from Nanoscale Carbon Materials

    Online Presentations | 15 May 2007 | Contributor(s):: Timothy S Fisher

    Prior studies on electron emission show possibly beneficial effects ofnanoscale phenomena on energy-conversion characteristics. For example,recent work has shown that the electric field around a nanoscale fieldemission device can increase the average energy of emitted electrons. Weconsider here...

  17. Atomistic Green's Function Method 1-D Atomic Chain Simulation

    Tools | 16 Apr 2007 | Contributor(s):: Zhen Huang, Wei Zhang, Timothy S Fisher, Sridhar Sadasivam

    Calculation of Thermal Conductance of an Atomic Chain

  18. BNC Annual Research Symposium: Nanoscale Energy Conversion

    Online Presentations | 23 Apr 2007 | Contributor(s):: Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  19. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    Online Presentations | 04 Apr 2007 | Contributor(s):: Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the Department of Electrical and Computer Engineering, the University of Western Ontario, London, ON, Canada....

  20. Highly Efficient Thermal Transport: The Application of Carbon Nanotube Array Interfaces

    Online Presentations | 01 Feb 2007 | Contributor(s):: Baratunde A. Cola

    Carbon nanotubes (CNTs) have received much attention in recent years for their extraordinary properties that through careful engineering may be leverage for the development of numerous advantageous applications. However, to date, only few CNT based applications exist in the market place. So when...