Tags: materials science

Description

Materials science is the understanding and application of properties of matter. Materials science studies the connections between the structure of a material, its properties, methods of processing and performance for given applications.

Please see the nanoHUB Group Materials Science for highlighted materials science related items.

For educators please see the nanoHUB group MSE Instructional Exchange

For the latest tools that combine materials science with machine learning and data science see the nanoHUB group Data Science and Machine Learning

Teaching Materials (161-169 of 169)

  1. CNTbands: First-Time User Guide

    Teaching Materials | 15 Jun 2009 | Contributor(s):: Xufeng Wang, Youngki Yoon

    This is a simple guide designed for first-time users of CNTbands. It gives a brief introduction of the tool and a series of tutorials to help users learn the basics of CNTbands.NCN@Purdue

  2. ABINIT: First-Time User Guide

    Teaching Materials | 09 Jun 2009 | Contributor(s):: Benjamin P Haley

    This first-time user guide provides an introduction to using ABINIT on nanoHUB. We include a very brief summary of Density Functional Theory along with a tour of the Rappture interface. We discuss the default simulation (what happens if you don't change any inputs, and just hit...

  3. Introduction to VEDA: Virtual Environment for Dynamic AFM

    Teaching Materials | 26 Sep 2007 | Contributor(s):: Arvind Raman

    This resource has become outdated and has been retired by agreement with the author. Please see the VEDA tool page and supporting documents for current information regarding the VEDA Tool. This learning module describes the motivation, theory, and features of VEDA- a Virtual Environment for...

  4. X-Ray Photoelectron Spectroscopy (XPS)

    Teaching Materials | 14 Dec 2006 | Contributor(s):: David Echevarria Torres

    The XPS (X-Ray Photoelectron Spectroscopy) it is also known as ESCA (Electron Spectroscopy for Chemical Analysis). This technique is based on the theory of the photoelectric effect that was developed by Einstein, yet it was Dr. Siegbahn and his research group who developed the XPS technique. ...

  5. Spectroscopic Ellipsometry

    Teaching Materials | 12 Dec 2006 | Contributor(s):: Lynn Marie Santiago

    This is the fourth contribution from the students in the University of Texas at El Paso Molecular Electronics course given in the fall of 2006.This presentation is presented at the undergraduate level and introduces spectroscopic ellipsometry, which is one of the most important characterization...

  6. Homework for PN Junctions: Depletion Approximation (ECE 606)

    Teaching Materials | 09 Jan 2006 | Contributor(s):: Muhammad A. Alam

    This homework assignment is part of ECE 606 "Solid State Devices" (Purdue University). It contains 5 problems which lead students through a comparison of the depletion approximation and an exact solution of PN junction diodes. Students compute the exact solution by using the PN Junction...

  7. Homework for Monte Carlo Method: High field transport in Bulk Si

    Teaching Materials | 06 Jan 2006 | Contributor(s):: Muhammad A. Alam

    This homework assignment is part of ECE 656 "Electronic Transport in Semiconductors" (Purdue University). It contains 10 problems which lead students through the simulation of high-field transport in bulk silicon.

  8. Homework for PN Junctions: Depletion Approximation (ECE 305)

    Teaching Materials | 06 Jan 2006 | Contributor(s):: Mark Lundstrom, David Janes

    This homework assignment is part of ECE 305 "Semiconductor Device Fundamentals" (Purdue University). It contains 7 problems which lead students through a comparison of the depletion approximation and the exact analysis of a PN junction diode.

  9. Resonant Tunneling Diodes: an Exercise

    Teaching Materials | 06 Jan 2006 | Contributor(s):: H.-S. Philip Wong

    This homework assignment was created by H.-S. Philip Wong for EE 218 "Introduction to Nanoelectronics and Nanotechnology" (Stanford University). It includes a couple of simple "warm up" exercises and two design problems, intended to teach students the electronic properties...