Tags: materials science

Description

Materials science is the understanding and application of properties of matter. Materials science studies the connections between the structure of a material, its properties, methods of processing and performance for given applications.

Please see the nanoHUB Group Materials Science for highlighted materials science related items.

For educators please see the nanoHUB group MSE Instructional Exchange

For the latest tools that combine materials science with machine learning and data science see the nanoHUB group Data Science and Machine Learning

Resources (1061-1065 of 1065)

  1. Curriculum on Nanotechnology

    Courses | 27 Jan 2005

    To exploit the opportunities that nanoscience is giving us, engineers will need to learn how to think about materials, devices, circuits, and systems in new ways. The NCN seeks to bring the new understanding emerging from research in nanoscience into the graduate and undergraduate curriculum. The...

  2. Exponential Challenges, Exponential Rewards - The Future of Moore's Law

    Online Presentations | 14 Dec 2004 | Contributor(s):: Shekhar Borkar

    Three exponentials have been the foundation of today's electronics, which are often taken for granted—namely transistor density, performance, and energy. Moore's Law captures the impact of these exponentials. Exponentially increasing transistor integration capacity, and...

  3. Electronic Transport in Semiconductors (Introductory Lecture)

    Online Presentations | 25 Aug 2004 | Contributor(s):: Mark Lundstrom

    Welcome to the ECE 656 Introductory lecture. The objective of the course is to develop a clear, physical understanding of charge carrier transport in bulk semiconductors and in small semiconductor devices.The emphasis is on transport physics and its consequences in a device context. The course...

  4. Faster Materials versus Nanoscaled Si and SiGe: A Fork in the Roadmap?

    Online Presentations | 20 Apr 2004 | Contributor(s):: Jerry M. Woodall

    Strained Si and SiGe MOSFET technologies face fundamental limits towards the end of this decade when the technology roadmap calls for gate dimensions of 45 nm headed for 22 nm. This fact, and difficulties in developing a suitable high-K dielectric, have stimulated the search for alternatives to...

  5. Nanoelectronics and the Future of Microelectronics

    Online Presentations | 22 Aug 2002 | Contributor(s):: Mark Lundstrom

    Progress in silicon technology continues to outpace the historic pace of Moore's Law, but the end of device scaling now seems to be only 10-15 years away. As a result, there is intense interest in new, molecular-scale devices that might complement a basic silicon platform by providing it...