Tags: carbon nanotubes

Description

100 amps of electricity crackle in a vacuum chamber, creating a spark that transforms carbon vapor into tiny structures. Depending on the conditions, these structures can be shaped like little, 60-atom soccer balls, or like rolled-up tubes of atoms, arranged in a chicken-wire pattern, with rounded ends. These tiny, carbon nanotubes, discovered by Sumio Iijima at NEC labs in 1991, have amazing properties. They are 100 times stronger than steel, but weigh only one-sixth as much. They are incredibly resilient under physical stress; even when kinked to a 120-degree angle, they will bounce back to their original form, undamaged. And they can carry electrical current at levels that would vaporize ordinary copper wires.

Learn more about carbon nanotubes from the many resources on this site, listed below. More information on Carbon nanotubes can be found here.

All Categories (241-260 of 286)

  1. The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics

    Online Presentations | 11 Apr 2006 | Contributor(s):: Muhammad A. Alam

    In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent work in developing a comprehensive theoretical framework to describe the performance of these "pick-up...

  2. Molecular Dynamics Studies of Gaseous Transport

    Online Presentations | 05 Apr 2006 | Contributor(s):: Ki-Ho Lee, Jason Myers, Susan Sinnott

    Carbon nanotubes (CNTs) have generated a great deal of interest due to their unique properties. In this study, we examine the transport properties of various nanotubes using REBO-MD to determine the effects of diameter and chirality on transport mode. Both oxygen and methane were diffused through...

  3. Thermal Microsystems for On-Chip Thermal Engineering

    Online Presentations | 04 Apr 2006 | Contributor(s):: Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  4. Tribological Properties of Carbon Nanotube Bundles

    Online Presentations | 03 Apr 2006 | Contributor(s):: SeongJun Heo, Susan Sinnott

    The tribological properties of carbon nanotube(CNT) bundles are investigated in this research using classical molecular dynamics(MD) simulations. Bundle of hollow single walled CNT or CNT filled with C60 is placed between two hydrogen-terminated amorphous diamond-like carbon(DLC) substrates. The...

  5. Zhi Tang

    Zhi Tang is currently a research scientist in Beijing Kingway Technology, a high-tech startup founded at Beijing in 2010. He graduated from MechSE department in UIUC with his PhD degree in 2008. He...

    https://nanohub.org/members/1966

  6. The Effect of Temperature Control on the Mechanical Behavior of Carbon Nanotubes

    Online Presentations | 29 Mar 2006 | Contributor(s):: SeongJun Heo, Susan Sinnott

    The effect of thermostat configurations on the mechanical behavior of empty and butane (n-C4H10) filled (10,10) carbon nanotubes (CNTs) is examined using classical, atomistic, molecular dynamics (MD) simulations. In particular, the influence of different types of thermostats, relative numbers of...

  7. Irradiation and Nanomechanics of Multi-Walled Carbon Nanotubes

    Online Presentations | 23 Mar 2006 | Contributor(s):: Sharon Pregler, Susan Sinnott

    Irradiation of nanotube structures with electron and ion beams has been used to produce functionalized nanotubes and fundamentally new structures, including junctions. Here, we build on previous studies to investigate the low-energy electron and ion (Ar and CF3) beam irradiation of triple walled...

  8. Engineering the Fiber-Matrix Interface in Carbon Nanotube Composites

    Online Presentations | 23 Mar 2006 | Contributor(s):: Sharon Pregler, Yanhong Hu, Susan Sinnott

    Particle depositions on polymer and carbon substrates to induce surface chemical modification are a growing research topic in particle-surface interactions due to localized deposition energy and the high density of molecules impacting the surface. Previous simulations have shown that particle...

  9. Bending Properties of Carbon Nanotubes

    Online Presentations | 21 Mar 2006 | Contributor(s):: SeongJun Heo, Susan Sinnott

    The effect of filling carbon nanotubes on the mechanical, especially bending, behavior of empty and filled (10,10) carbon nanotubes (CNTs) is examined using classical, atomistic, molecular dynamics (MD) simulations. In particular, influences of different filling materials like C60 or other CNT...

  10. Atul Veer

    https://nanohub.org/members/12855

  11. Electron and Ion Microscopies as Characterization Tools for Nanoscience and Nanotechnology

    Online Presentations | 27 Feb 2006 | Contributor(s):: Eric Stach

    This tutorial presents a broad overview of the basic physical principles of techniques used in scanning electron microscopy (SEM), as well as their application to understanding processing/structure/property relationships in nanostructured materials. Special emphasis is placed on the capabilities...

  12. A Gentle Introduction to Nanotechnology and Nanoscience

    Online Presentations | 13 Feb 2006 | Contributor(s):: Mark Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement involved in nanoscale research - what, why and how. Specific topics include assembly, properties,...

  13. Optimization of Transistor Design for Carbon Nanotubes

    Online Presentations | 20 Jan 2006 | Contributor(s):: Jing Guo

    We have developed a self-consistent atomistic simulator for CNTFETs.Using the simulator, we show that a recently reported high-performanceCNTFET delivers a near ballistic on-current. The off-state, however, issignificantly degraded because the CNTFET operates like anon-conventional Schottky...

  14. Resonant Tunneling Diodes: an Exercise

    Teaching Materials | 06 Jan 2006 | Contributor(s):: H.-S. Philip Wong

    This homework assignment was created by H.-S. Philip Wong for EE 218 "Introduction to Nanoelectronics and Nanotechnology" (Stanford University). It includes a couple of simple "warm up" exercises and two design problems, intended to teach students the electronic properties...

  15. Fundamentals of Nanoelectronics (Fall 2004)

    Courses | 01 Sep 2004 | Contributor(s):: Supriyo Datta, Behtash Behinaein

    Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents. Welcome to the ECE 453 lectures. The development of "nanotechnology" has made it possible to engineer material and devices on a length...

  16. Atomic Force Microscopy

    Online Presentations | 01 Dec 2005 | Contributor(s):: Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of the physics of the interaction forces between the nanoscale tip and sample, the dynamics of the...

  17. An Electrical Engineering Perspective on Molecular Electronics

    Online Presentations | 26 Oct 2005 | Contributor(s):: Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than 50 nm long, and billion transistor logic chips have arrived. Moore's Law continues, but the end of...

  18. Semiconductor Interfaces at the Nanoscale

    Online Presentations | 17 Oct 2005 | Contributor(s):: David Janes

    The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device structures and fabrication technologies. Various device technologies are being investigated,...

  19. Introduction to Carbon Nanotube Electronics

    Series | 12 Oct 2005 | Contributor(s):: Susan Sinnott

    Carbon nanotubes (CNT) have interesting, structure-dependent electronic properties. In particular, CNTs can be a metallic or semiconducting depending on the way in which the carbon atoms are arranged in the CNT walls. The purpose of this learning module is to familiarize students with the basic...

  20. On the Reliability of Micro-Electronic Devices: An Introductory Lecture on Negative Bias Temperature Instability

    Online Presentations | 28 Sep 2005 | Contributor(s):: Muhammad A. Alam

    In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with the invention of bipolar transistors several years later. In 1960s, scientists at Fairchild worked...