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PN junctions: semiconductors vs. graphene
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experimental observation

B. Huard, J.A. Sulpizo, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon,
Transport measurements across a tunable potential barrier in graphene,” Phys.
Rev. Lett., 98, 236803, 2007.
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electron “optics” in graphene
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Snell’'s Law
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negative index of refraction
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Veselago lens




theoretical prediction

electron trajectories

The Focusing of Electron Flow
and a Veselago Lens in Graphene
p-n Junctions

Vadim V. Cheianov,™* Vladimir Fal'ko,* B. L. Altshuler®?

The focusing of electric current by a single p-n junction in graphene is theoretically predicted.
Precise focusing may be achieved by fine-tuning the densities of carriers on the n- and p-sides of
the junction to equal values. This finding may be useful for the engineering of electronic lenses
and focused beam splitters using gate-controlled n-p-n junctions in graphene-based transistors.

and electronics. Rays in geometrical optics  of the technological implementation of this
are analogous to classical trajectories of  similarity. The analogy with optics may also hold
electrons, whereas electron de Broglie waves can  considerable potential for semiconductor elec-

There are many similarities between optics  interfere. The electron microscope is one example

Science, 315, 1252, March 2007

&g% NCN 10
nanoHUB.org



making graphene PN junctions

FIG. 1. Schematic diagram of a top-gated graphene device
with a four-probe measurement setup. Graphene sheet is black,
metal contacts and gates are dark gray.

From: N. Stander, B. Huard, and D. Goldhaber-Gordon, “Evidence for
Klein Tunneling in Graphene p-n Junctions,” PRL 102, 026807
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band diagrams: conventional PN junctions
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band diagrams: graphene PN junctions
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an abrupt graphene N*N junction
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an abrupt graphene PN junction
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conductance of graphene junctions
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objectives

To understand:

1) Electron “optics” in NP junctions

2) The conductance of NP and NN junctions
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about graphene
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electron wavefunction in graphene
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absence of backscattering

v (%)) =( 5;-9 Je’(kxx* “)

s=sgn(£) 6&=arctan (ky/ kX)
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a graphene PN junction

N-type

o anti-parallel to k
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group velocity and wavevector
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what happens for parabolic bands?
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optics

Snell's Law

nsing, = n,siné,

group velocity parallel to
wavevector
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electron trajectories in graphene PN junctions

rays in geometrical optics are analogous to semiclassical electron trajectories

1) k, Is conserved

K=K=K

Yy Y Y

2) Energy is conserved

S=5=1




on the N-side...

E. =hv-k,

K,= k.sing, = k, = k_sind

0, =6

angle of incidence =
angle of reflection
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a symmetrical PN junction

N-type
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wavevectors

||
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wavevectors and velocities

k=k=K
K=—K=K
6, =0,
6, =6,

“negative index of refraction”




more generally

1) y-component of
momentum
conserved

2) energy conserved
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reflection and transmission

N-type | P-type

We know the direction of the reflected and transmitted rays,
but what are their magnitudes?
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reflection and transmission
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transmission: abrupt, symmetrical NP junction
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conductance of abrupt NN and NP junctions

7(6,)= cos? 6,

This transmission reduces the conductance of NP junctions
compared to NN junctions, but not nearly enough to explain
experimental observations.



a graded, symmetrical PN junction

The Fermi level passes through the neutral point in the transition region of an NP
junction. This does not occur in an NN or PP junction, and we will see that this

lowers the conductance of an NP junction.

N-type
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treat each ray (mode) separately
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for each k, (transverse mode)

band to band tunneling (BTBT)

N-type P-type

a E. =2hv-k:sing
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NEGF simulation

40 60 -~ 100
Transport Direction (nm)

T. Low, et al., IEEE TED, 56,
o%g% NCN 1292, 2009
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propagation across a symmetrical NP junction
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WKB tunneling

2 : For normal incidence, k, is real
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transmission vs. angle
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graphene junctions: NN, NP, PP, PN

E(X) “

two independent variables: 1) Eg and 2) V,
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graphene junctions

qV; > E, right side N-type
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conductance of graphene junctions
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conductance vs. Eg and V,
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measured transport across a tunable barrier

a)
graphene [ top gate)
PMMA

D)
lead 1 g o Iead

-l—-

B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, “Transport
Measurements Across a Tunable Potential Barrier in Graphene, Phys. Rev. Lett., 98, 236803,
2007.



experimental resistance
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NEGF simulation of abrupt junctions
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conductance of abrupt graphene junctions
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conductance of graded graphene junctions
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conductance vs. gate voltage measurements

either N-type or P-type either N-type or P-type
depending on the back depending on the
gate voltage metal workfunction

B Gt
L
Back gate
(doped Si)
I V.
VG B. Huard, N. Stander, J.A. Sulpizo, and D.
Goldhaber-Gordon, “Evidence of the role of
NnCcN contacts on the observed electron-hole
&gb nancHUB.org asymmetry in graphene,” Pbys. Rev. B., 78,

121402(R), 2008.



g

NncN

nanoHUB.org

outline

1) Introduction

2) Electron optics in graphene

3) Transmission across NP junctions

4) Conductance of PN and NN junctions
5) Discussion

6) Summary

56



conclusions

1) For abrupt graphene PN junctions transmission is
reduced due to wavefunction mismatch.

2) For graded junctions, tunneling reduces transmission
and sharply focuses it.

3) Normal incident rays transmit perfectly

4) The conductance of a graphene PN junction can be
considerably less than that of an NN junction.

5) Graphene PN junctions may affect measurements and
may be useful for focusing and guiding electrons.
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