Carbon Nanotechnology: Scientific and Technological Issues Joseph W. Lyding **Department of Electrical and Computer Engineering and Beckman Institute University of Illinois at Urbana-Champaign**

Carbon Nanotechnology: Scientific and Technological Issues Joseph W. Lyding Department of Electrical and Computer Engineering and Beckman Institute University of Illinois at Urbana-Champaign

<u>Outline</u>

- Carbon Nanotechnology
- SWNTs on Silicon
- SWNTs III-V Semiconductors
- Graphene
- Ultra-Sharp (r < 1nm) STM Probes

Graphene and Nanotube Nanoelectronics

Sensors

Nature Mat. 6, 652 (2007).

Advantageous properties for nanoelectronics

All Surface -> Good for Sensors

High Mobilities $\mu = 20,000 \text{ cm}^2/\text{V}\cdot\text{s}$ (Si MOSFET – 600 cm²/V·s, InSb – 30,000 cm²/V·s)

Bandgap Engineering

Bandgap engineering

Phys. Rev. Lett. 98, 206805 (2007).

Carbon Nanotubes

- Fullerenes discovered by Smalley, Kroto, & Curl 1985 (1996 Nobel prize)
- Nanotubes discovered by Iijima in 1991 can be seen in its structure as an extension of a buckyball
- Most nanotubes are bundled together (by van der Waals interactions), forming ropes

To close the CNT, the cap need pentagons as declination points

Carbon Nanotubes - Structure

Electronic Properties of Carbon Nanotubes

STM/STS of SWNTs

Jeroen W. G. Wildoer, Liesbeth C. Venema, Andrew G. Rinzler, Richard E. Smalley & Cees Dekker, Nature <u>391</u>, 59 (1998).

STM of SWNTs

Teri Wang Odom*, Jin-Lin Huang*, Philip Kim, Charles M. Lieber, Nature 391, 62 (1998)

Single Walled Carbon Nanotubes on Si(100)

•Problems with Solution Deposition •Dry Contact Transfer (DCT) Technique Nanotube-Substrate Interactions

Peter Albrecht

BECKMAN INSTITUTE Nanohour - November 7, 2007

Ultrahigh Vacuum (UHV) Scanning Tunneling Microscopy (STM)

Benefits of UHV STM Atomic Resolution Analysis Detailed Spectroscopy Control Surface Chemistry

Thermal Drift ~ 0.1nm/h @ 300K

Hydrogen-Passivated Silicon

Si(100)-2x1:H

Solution Deposition of SWNTs onto H-Si(100)

Results of Solution Deposition of SWNTs

Dry Contact Transfer (DCT) Technique

Isolated SWNTs Following DCT

DCT results in the ultra-clean deposition of isolated SWNTs rather than bundles. The DCT method can be generalized for the deposition of nearly any nanostructure onto nearly any surface.

DCT of SWNTs onto Si(100)-2x1:H

DCT of SWNTs onto Si(100):H Surfaces

Semiconducting SWNTs on H-Si(100) characterized by STM spectroscopy

Metallic SWNTs on H-Si(100) characterized by STM spectroscopy

Carbon nanotubes can be precisely manipulated on silicon using the UHV STM

(1) Scan across SWNT with feedback ON and store contour (solid line)

(2) Position tip user-specified Δz (typically 5 Å) closer to the surface
(3) Execute manipulation contour with feedback OFF (dashed line)
(4) Optional: interpolate through the SWNT (dotted line)

P. M. Albrecht and J. W. Lyding, Small 3, 146 (2007).

Nanopatterning H-Si(100)

Lyding et al., Appl. Phys. Lett. 64, 2010 (1994)

Hersam et al., Nanotechnology 11, 70 (2000)

Controlling Nanotube – Substrate Interactions: STM Nanolithography

Nanotube-Substrate Interaction H-Passivated vs Clean Si(100)

Preferential orientation of a semiconducting tube on STMpatterned H-Si(100)

P. M. Albrecht, S. Barraza-Lopez, and J. W. Lyding, Small 3, 1402 (2007).

SWNT zigzag symmetry aligns parallel to Si dimer rows

P. M. Albrecht, S. Barraza-Lopez, and J. W. Lyding, Small 3, 1402 (2007).

BECKMAN INSTITUTE Nanohour - November 7, 2007

Nanotube Electronic Structure: Influence of Local Charge

Individual SWNTs can be cut with the STM under feedback control

Single molecule absorption spectroscopy detected by STM Erin Carmichael, Josh Ballard, Dongxia Shi, Greg Scott, Martin Gruebele

SWNTs on UHV-Cleaved GaAs(110) and InAs(110)

- Nanotube-Substrate Alignment
- NT-NT Metal-Semiconductor Junction
- Nanotube-Substrate Electronic Interactions

DCT of SWNTs onto the III-V(110) Surface

DCT Process

19.5 nm, 15 pA, 1.7 V

L. B. Ruppalt, P. M. Albrecht and J. W. Lyding, JVST B22, 2005 (2004).

SWNTs Preferentially Align Along Lattice Rows

SWNTs Preferentially Align Along Lattice Rows

19.5 nm, 15 pA, 1.7 V

Yong-Hyun Kim, M. J. Heben, and S.B. Zhang, *PRL*, **92**, 176102-1 –4 (April 2004)

SWNTs on InAs(110): Substrate-Induced NT Doping

SWNTs on InAs: Orientation-Dependent Effects

SWNTs on InAs: Orientation-Dependent Effects

SWNTs on InAs: Orientation-Dependent Effects

Nanotube Heterojunction on InAs(110)

L.B. Ruppalt and J.W. Lyding, Small 3, 288 (2007)

SWNT IMJ Identified via STM

STM of intramolecular SWNT junction (IMJ)

L.B. Ruppalt and J.W. Lyding, Small 3, 288 (2007)

Spatially Resolved STS indicate MIGS at IMJ

Spatially Resolved STS indicate MIGS at IMJ

Spatially Resolved STS indicate MIGS at IMJ

L.B. Ruppalt and J.W. Lyding, Small 3, 288 (2007)

ECE Illinois

Graphene

Finite Size EffectsSubstrate Electronic Effects

Kyle Ritter, Justin Koepke

BECKMAN INSTITUTE Nanohour - November 7, 2007

Single Layer Graphene

Double Layer Graphene

Graphene Spectroscopy: Finite Size Effect

Graphene energy gap scales inversely with length

Graphene: Substrate Effects

olo

BECKMAN INSTITUTE Nanohour - November 7, 2007

Graphene: Substrate Effects

Nanotube-Substrate Interaction Substrate Structure Superimposed on Nanotube

Ultra-Sharp (r < 1nm) STM Probes

Field-Directed Sputter Sharpening (FDSS)
Tungsten and Platinum-Iridium Probes
STM Measurements

Field-Directed Sputter Sharpening (FDSS)

Apply Positive Bias to Probe to Deflect Ions away from Apex
Material Surrounding Apex is Preferentially Sputtered – Sharpening Apex
Sharpened Apex Enhances Field-Directed Process, ultimately leading to Self-Limited Sharpness (r < 1 nm)

Note: FDSS is compatible with batch processing.

PtIr Probe: Incremental Sharpening

Sharpening: TEM Imaging

STM Imaging

Poly-Tungsten Tip Bias: +400 V 2.0 keV Neon Ions 35 minutes

STM Patterning

In conclusion...

•The DCT technique enables the ultra-clean fabrication of carbon nanotubes and graphene on clean semiconductor surfaces.

•Atomic scale STM and STS elucidates the detailed nature of the nanostructure-substrate interaction.

Acknowledgements

UIUC STM Group

Peter AlbrechtErin CarmichaelKevin HeDavid JunJustin KoepkeKyle RitterLaura RuppaltScott SchmuckerGreg ScottMatt SztelleWei Ye

