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Preface

These notes provide a detailed treatment of the thermal energy storage
and transport by conduction in natural and fabricated structures. Ther-
mal energy by two main carriers–phonons and electrons–are explored from
basic principles. For solid-state transport, a common Landauer framework
is used for heat flow, and issues including the quantum of thermal conduc-
tance, ballistic interface resistance, and carrier scattering are elucidated.
Bulk material properties, such as thermal conductivity, are derived from
transport theories, and the effects of spatial confinement on these proper-
ties are established.

The foregoing topics themselves are not unique as elements in a book;
many other outstanding texts cover these topics admirably and are cited
in context herein. At the same time, the present content emphasizes a
basic theoretical framework based on the Landauer formalism that is as
self-consistent as possible, not only internally but also with respect to sim-
ilar efforts in this book series on the subject of electrical transport. The
other series titles, written by Profs. Supriyo Datta and Mark Lundstrom,
have therefore provided much inspiration to the present work, as have my
related conversations with these two amazing colleagues. The end result
is (hopefully) an accessible exposition on the foundations of the subject
that remains concise by avoiding lengthy digressions into the vast array
of related contemporary research topics. At the same time, it is my hope
that readers, after studying this work, will be ready to enter the field well-
equipped to contribute to this wonderful body of research and community
of researchers.

T. S. Fisher
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Nomenclature

α thermal diffusivity (length2/time)
β inverse of thermal energy, (kBT )−1 (1/energy)
χ carrier energy scaled by kBT (-)
ηa unit cells per volume of real space (1/volume)
ηe volumetric electron density (1/volume)
ĜQ quantum of thermal conductance (energy/time/temperature)
κ thermal conductivity (power × length/(‘area’ × temperature))
Λ particle mean free path (length)
D plate bending stiffness (force × distance = energy)
F plate loading (force/area)
L boundary scattering length scale (length)
T carrier transmission function (-)
µ mass density of a continuum string (mass/length)
ν Poisson ratio (-)
Ω number of possible states of a statistical ensemble (-)
ω frequency (radians/time)
ωD Debye frequency (radians/time)
ωE Einstein frequency (radians/time)
φ emitter work function (energy)
ρ mass density (mass/volume)
σ scattering cross section (area)
σe electrical conductivity (current/(length × voltage))
τ scattering time (time)
τ−1 scattering rate (1/time)
τ−1
b boundary scattering rate (1/time)
θD Debye temperature (temperature)
θE Einstein temperature (temperature)
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θF Fermi temperature (temperature)
G̃′

Q scaled spectral thermal conductance (-)
ε boson energy (energy)
.ai real-space lattice translational vectors (length)
.bi reciprocal lattice translation vectors (lattice)
.G reciprocal lattice vector (1/length)
.R real-space lattice vector (length)
.vg group velocity (length/time)
a lattice constant (length)
c phase velocity (length/time)
c0 speed of light in vacuum, 2.99792458× 108 m/s
cv volumetric specific heat (energy/(volume × temperature))
D(ω) density of boson states, frequency basis (time/volume)
D(ε) density of boson states, energy basis (volume energy)−1

D(E) density of fermion states, energy basis (volume energy)−1

D(K) density of boson states, k-space basis (length/volume)
Dβ

α dynamical matrix (force/(length × mass))
E energy (energy)
Eb bond energy (energy)
EF Fermi energy (energy)
EY Young’s modulus (force/area)
Evac vacuum energy level (energy)
F boundary scattering fitting factor (-)
F force on an atom due to bond stretching (force)
fo

i equilibrium carrier distribution function (-)
f(t) forward-wave string displacement (length)
g spring constant of an interatomic bond (force/length)
G′

Q spectral thermal conductance (power/temperature, per unit
frequency for phonons, or per unit energy for electrons)

g(t) reflected-wave string displacement (length)
GQ thermal conductance (power/temperature)
h plate thickness (length)
J electrical current density (current/‘area’)
JQ heat flux (power/‘area’)
K phonon wavevector (1/length)
k electron wavevector (1/length)
KD Debye wavevector (1/length)
kF Fermi wavevector (1/length)
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Le Lorenz number, dimensionless constant ×
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kB
q
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M(ω) number of phonon modes (-)
M(E) number of electron modes (-)
me electron mass, 9.10938188× 10−31 kg
MdD(ω) phonon mode density, d = system dimension (1/‘area’)
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N number of atoms (-)
N ′ electron number (-)
NA Avogadro’s number, 6.0221415× 1023 (-)
ni defect density of impurity scatterers (1/volume)
NdD number of allowed phonon states, d = system dimension (-)
Nk number of allowed electron states (-)
NK number of phonons with wave vector K (-)
P acoustic wave power (energy/time)
Pν probability of a statistical state (-)
q elementary electron charge, 1.602 × 10−19 C
r distance coordinate (length)
Rb thermal boundary (interface) resistance (temperature/power)
R

′′

b area-normalized thermal boundary (interface) resistance
(area×temperature/power)

S entropy (power/temperature)
t12 interfacial energy transmittance from medium 1

to medium 2 (-)
U internal energy (energy)
U potential energy (energy)
u atomic displacement away from equilibrium (length)
u specific internal energy (energy/volume)
u′(x) spectral energy density (energy/volume, per unit x, where x

is a spectral quantity such as frequency or wavelength)
va acoustic wave velocity (length/time)
vF Fermi velocity (length/time)
y(x, t) total string displacement (length)
Z acoustic impedance of a string under tension (mass/time)



September 14, 2013 12:12 World Scientific Book - 9in x 6in B1652 fm



September 14, 2013 12:12 World Scientific Book - 9in x 6in B1652 fm

List of Figures

1.1 Schematic of a general contact-device-contact arrangement. . . 2
1.2 Variation of potential energy field U(r) with interatomic dis-

tance r. r = r0 corresponds to the equilibrium separation with
minimum potential energy. . . . . . . . . . . . . . . . . . . . . 4

1.3 Harmonic approximation to the real interatomic potential with
anharmonicity. At small displacements, the harmonic potential
is a good approximation. . . . . . . . . . . . . . . . . . . . . . . 5

1.4 (a) Two isolated, self-contained atoms and associated electron
energy states. (b) Quantized energy states upon bond formation
between the two isolated atoms. Energy levels are modified as
electron orbitals become shared in a bond. . . . . . . . . . . . . 6

1.5 An ideal 1D crystal modeled as periodic atom-spring-atom
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 An ideal 2D monatomic rectangular lattice represented by
periodic translation of valid primitive cells (shaded green)
defined by green basis vectors. . . . . . . . . . . . . . . . . . . 7

1.7 Structure of a two-atom basis crystal. Each nodal site of the lat-
tice contains a two-atom basis that defines the complete crystal
structure upon translation through all possible lattice vectors. . 8

1.8 Graphene nanoribbon crystal structure. The left structure is the
armchair configuration; the right structure is zigzag. Dashed
rectangles represent a graphene nanoribbon unit cell. The unit
cell for each configuration is displayed below the crystal lattice
structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 Basis vectors for the graphene crystal structure. . . . . . . . . . 10
1.10 Perfect periodic 1D chain of atoms with lattice constant a. . . 10

xix



September 14, 2013 12:12 World Scientific Book - 9in x 6in B1652 fm

xx Thermal Energy at the Nanoscale

1.11 (a) Direct graphene lattice. (b) Reciprocal graphene lattice.
The primitive cell of the reciprocal lattice is the 1st Brillouin
zone. Translation vectors of both lattices are also depicted. . . 12

1.12 1D chain of N atoms with the Born-von Karman boundary con-
dition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.13 Dispersion relation for a monatomic 1D chain of atoms. . . . . 16
1.14 Discrete energy levels depict phonon quantization. Successive

energy levels are separated by !ω . . . . . . . . . . . . . . . . . 19
1.15 Electron in a cube with a spatially periodic wavefunction. . . . 21
1.16 Sketch of filled and empty electron energy states. The work func-

tion, φ, is defined as the difference between the Fermi energy,
EF , and the vacuum energy, Evac. . . . . . . . . . . . . . . . . 23

1.17 Schematic of a 1D atomic chain with a two-atom basis. . . . . 23
1.18 Normalized frequency as a function of normalized wavevector

for a diatomic 1D chain with m2 = 2m1. . . . . . . . . . . . . 26
1.19 Normalized frequency as a function of normalized wavevector for

a diatomic 1D chain, for the special case of m1 = m2. (a) The
usual range K ∈ {−π/a,π/a}. (b) The range K ∈ {0, 2π/a}. . 28

1.20 Construction of the graphene Brillouin zone . . . . . . . . . . . 31
1.21 Dispersion curves of the diatomic chain for increasing m2/m1 . 35

2.1 Temperature-dependent energy of a classical harmonic oscillator
and two quantum harmonic oscillators at ω = 1013 rad/s and
ω = 1014 rad/s. The zero-point energy for quantum oscillators
is on the y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 k-space in 2D and 3D. Minimum separation between allowable
wavevectors is 2π

L . k-space spherical ‘volume’ (circular area for
2D) is depicted in the figure. . . . . . . . . . . . . . . . . . . . 44

2.3 Parabolic electron energy band (with normalized band edge at
Ec,norm = 0.5) and corresponding allowable k-states at low and
high wavevectors. . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Electron density of states for 0D (quantum dot), 1D (quantum
wire), 2D (quantum well), and 3D (bulk) materials. Bulk mate-
rial density of states follows a

√
E dependence, whereas confined

material densities of states present discontinuities due to multi-
ple band-folding from confined dimensions. . . . . . . . . . . . 47

2.5 Geometry and density of states of a (12,12) single-walled carbon
nanotube (SWCNT). Refer to https://nanohub.org/resources/
cntbands-ext for the online tool. . . . . . . . . . . . . . . . . . 48

2.6 Blackbody emission from a small hole in a box. . . . . . . . . . 51



September 14, 2013 12:12 World Scientific Book - 9in x 6in B1652 fm

List of Figures xxi

2.7 Spectral intensity (per unit angular frequency ω) as a function
of angular frequency at different temperatures. The frequency
at maximum spectral intensity increases with increasing tem-
perature, according to Wien’s displacement law (Modest, 2003). 52

2.8 (a) Bose-Einstein distribution function. (b) Fermi-Dirac distri-
bution function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.9 Graphene dispersion relation . . . . . . . . . . . . . . . . . . . 60
2.10 Spectral energy distribution for three different temperatures . . 60

3.1 Longitudinal and transverse phonon branches. Atoms vibrate
along the wave propagation direction in the longitudinal mode.
In the transverse mode, atoms vibrate perpendicular to the wave
propagation direction. . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Debye’s linear approximation to the phonon dispersion. The
Debye cutoff wavevector, KD, is chosen such that it contains
allowed wavevectors equalling the number of ions in the crystal.
Debye quantities such as the Debye cutoff wavevector, KD, and
the associated Debye cutoff frequency, ωD, are depicted. . . . . 66

3.3 Comparison of specific heat dependence on temperature, as pre-
dicted by the Debye and the Einstein model. The specific heats,
derived from both the models, converge at low and high tem-
peratures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Variation of specific heat with temperature for low-dimensional
structures, as predicted by the Debye model. Notice the T d

dependence of specific heat at low temperatures, where d is the
dimensionality of the medium. . . . . . . . . . . . . . . . . . . 73

3.5 A schematic depicting the kinetic theory of thermal conduc-
tivity. An atom at z + Λz travels a distance equivalent to its
mean free path, Λ (Λz in the z-direction), before experiencing
a collision. This atomic motion results in a heat flux, along the
z-direction, which is a function of the particle velocity and the
particle mean free path. . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Temperature dependence of the specific heat of graphene and
graphite. Figure originally published by Pop et al. (2012). Used
with permission. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.7 Temperature dependence of the specific heat of potassium and
sodium. Figure originally published by Lien and Phillips (1964).
Used with permission. . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 Acoustic and optical contributions to specific heat. . . . . . . . 86



September 14, 2013 12:12 World Scientific Book - 9in x 6in B1652 fm

xxii Thermal Energy at the Nanoscale

4.1 Schematic of a general contact-device-contact arrangement with
(a) 3D (bulk) and (b) 1D (wire) contacts. . . . . . . . . . . . . 88

4.2 Schematic of the number of modes M . This factor is essentially
the number of half-waves for a carrier with wavelength λ (and
corresponding energy E derived from the carrier’s dispersion)
that fit into a cross-section of the device perpendicular to the
direction of transport. . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Derivative of the distribution function normalized by tempera-
ture T ×

(
∂fo

i
∂T

)
as a function of normalized energy for phonons

(χ = !ω
kBT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Derivative of the distribution function normalized by tempera-
ture T ×

(
∂fo

i
∂T

)
as a function of normalized energy for electrons

(χ = E−µ
kBT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Normalized phonon spectral conductance G̃′
Q as a function of

normalized energy χ. . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Normalized electron spectral conductance G̃′

Q as a function of
normalized energy χ. . . . . . . . . . . . . . . . . . . . . . . . . 99

4.7 χα moments (α = 0, 1, 2, 3) of the normalized phonon spectral
conductance G̃′

Q as a function of normalized phonon energy (or
frequency) χ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.8 χη moments (η = 0, 0.5, 1.0) of the normalized electron spectral
conductance G̃′

Q as a function of normalized energy χ for the
special case of EC = µ = 0. . . . . . . . . . . . . . . . . . . . . 102

4.9 Normalized frequency as a function of normalized wavevector for
a diatomic 1D chain with m2 = 2m1. The shaded regions show
the active frequency bands for acoustic and optical branches.
The corresponding limits on dimensionless energy χ are shown
on the right side. . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.10 Plot showing the variation of conductance normalized by the
quantum of conductance as a function of temperature . . . . . 110

4.11 Variation of spectral conductance (χαG̃′
Q) as a function of nor-

malized frequency (χ) for d = 2. The blue curve corresponds
to Debye dispersion (n = 1) and the pink curve corresponds to
quadratic dispersion (n = 2). . . . . . . . . . . . . . . . . . . . 111

5.1 Heat flow through a rectangular cross section of l1 × l2. The
boundaries can constrain the carrier mean free path. . . . . . . 118



September 14, 2013 12:12 World Scientific Book - 9in x 6in B1652 fm

List of Figures xxiii

5.2 Boundary scattering illustration showing that the same physical
boundary can appear to be rough (top) to small wavelengths and
smooth (bottom) to large wavelengths. . . . . . . . . . . . . . . 119

5.3 Schematic of a point defect in a lattice. In this case, the defect
is termed substitutional because it sits at a regular lattice site.
The defect alters the local bonds, thereby creating an extended
cross-section of its influence. . . . . . . . . . . . . . . . . . . . . 120

5.4 Schematic of a scattering tube that is aligned with a direction of
energy transport. Defects within the tube each have a diameter
of d, making the effective diameter of the scattering tube 2d. . 121

5.5 Bond energy diagram showing the ideal harmonic behavior and
the real anharmonic shape of the potential energy curve. . . . . 122

5.6 Three-phonon scattering processes of types A (2 in, 1 out,
with momentum conservation), B (1 in, 2 out, with momen-
tum conservation), and C (2 in, 1 out, without momentum
conservation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 k-space diagram of graphene showing example N (left) and U
(right) phonon scattering processes. . . . . . . . . . . . . . . . 124

5.8 k-space of graphene showing the highly restricted modes that
satisfy the scattering selection rules for various three-phonon
scattering examples. Based on the model reported by Singh
et al. (2011b). . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.9 Effective scattering rates as a function of normalized fre-
quency [χ = !ω/(kBT )] for three different temperatures, using
Matthiessen’s rule for the example of combined defect and U
process scattering. . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.10 Thermal conductivity as a function of temperature for the
example of combined defect and U process scattering. The
region below T = 10 K is dominated by defect scattering. Above
10 K, U scattering and the plateauing of specific heat with tem-
perature become prominent. . . . . . . . . . . . . . . . . . . . . 128

5.11 Reflection and transmission of a wave on strings under tension.
The wave is partially reflected and transmitted at the interface,
where a discontinuity in mass density µ exists. . . . . . . . . . 131

5.12 Schematic of a contact-device-contact arrangement in which the
number of modes changes at an interface within the device. . . 133

5.13 Multi-dimensional reflection and refraction of phonons at an
interface under acoustic mismatch. The refraction follows Snell’s
law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



September 14, 2013 12:12 World Scientific Book - 9in x 6in B1652 fm

xxiv Thermal Energy at the Nanoscale

5.14 Average AMM transmission coefficient for different group veloc-
ities and density ratios. . . . . . . . . . . . . . . . . . . . . . . 137

5.15 Reflection and transmission at a material interface. If the pro-
cess is diffuse, then tij = rji. . . . . . . . . . . . . . . . . . . . 138

5.16 Schematic of thermionic and field electron emission. The power
supply creates an electric field through which field-emitted elec-
trons tunnel. Thermionic electrons emit over the energy barrier
entirely. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.17 Schematic of a thermionic contact-device-contact arrangement.
Here, the device is vacuum, and the same potential barrier exists
at each contact interface. . . . . . . . . . . . . . . . . . . . . . 140

5.18 Thermionic transmission as a function of energy for 1D, 2D, and
3D emitters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.19 Thermionic electron energy distribution from bulk, single crystal
tungsten (100). The data were recorded at an emitter tempera-
ture of 850◦C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.20 Variation of thermal conductivity as a function of length. . . . 149
5.21 Angular average of the transmission coefficient from AMM for

different group velocities and density ratios. . . . . . . . . . . . 152
5.22 Thermionic electron energy distribution and transmission func-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.23 Schematic of confined nanostructures. . . . . . . . . . . . . . . 156
5.24 Snapshot from the online CDF tool. . . . . . . . . . . . . . . . 156

A.1 Phonon dispersion curves for graphene and the correspond-
ing density of states derived using a modified Tersoff potential
(Singh et al., 2011b). . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Schematic showing the vibrational displacement direction of the
flexural mode of a thin plate. . . . . . . . . . . . . . . . . . . . 158

A.3 Approximation of the ZA branch using a continuum flexural
plate bending model. . . . . . . . . . . . . . . . . . . . . . . . . 160

B.1 Band structure of graphene near the Dirac point. Figure from
Lundstrom and Jeong (2013), used with permission. . . . . . . 162

B.2 2D mode densities of graphene for electrons and the three active
phonon branches between 0 and 50 meV. The electronic result
uses a linear dispersion approximation, while phonon approxi-
mations are linear for the LA and TA branches and quadratic
for the ZA branch. . . . . . . . . . . . . . . . . . . . . . . . . . 164



September 14, 2013 12:12 World Scientific Book - 9in x 6in B1652 fm

List of Tables

3.1 Acoustic and optical phonon specific heats of a diatomic chain
with m2/m1 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1 Values of χ for phonons corresponding to the peaks in χαG̃′
Q. . 100

4.2 Values of χ for electrons corresponding to the peaks in χηG̃′
Q

for EC = µ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1 Scattering parameters for silicon and germanium . . . . . . . . 164

xxv





September 14, 2013 12:6 World Scientific Book - 9in x 6in B1652 ch01

Chapter 1

Lattice Structure, Phonons,
and Electrons

1.1 Introduction

Guessing the technical background of students in a course or readers of a
book is always a hazardous enterprise for an instructor, yet one must start a
book or a course somewhere on the landscape of knowledge. Here, we begin
with some essential concepts from condensed-matter physics and statistical
mechanics. The definition of essential, too, is questionable and is presently
intended to be information that recurs too frequently in the later parts of
the text to leave the requisite information to the many excellent reference
sources on these subjects.

Our overarching objective is to develop the tools required to predict
thermal transport in structures such as the one shown in Fig. 1.1. Arguably
the most important thermal characteristic of an object is its thermal con-
ductivity (κ) defined as:

κ ≡ [rate of heat flow (in W)] × [object length (in m)]
[cross-sectional area (in m2)] × [temperature drop (in K)]

. (1.1)

For roughly a century, thermal conductivity was considered a basic mate-
rial property in the engineering sense (e.g., with minor accommodation for
variations in temperature), and therefore, the effects of the geometric terms
in Eq. (1.1) were assumed to normalize with the others such that the final
property was independent of size and shape. However, with the advent of
microscale fabrication (and later nanoscale fabrication), the technical com-
munity was able to create tiny materials that exhibited deviations from the
size-independent property assumption. In such circumstances, knowledge
of not only a material’s size and shape becomes crucial but also the de-
tails of the atomic-scale carriers of thermal energy (Chen, 2005). At this

1
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level, in order to retain the utility of the concept of thermal conductivity
(and it does remain useful for many purposes) we need to understand many
additional factors, including:

• What type of quantum-mechanical carrier dominates heat flow in
the material?

• How is thermal energy distributed among these carriers?
• How fast do the carriers move through the material?
• How much thermal energy does each carrier hold as it moves?
• How do the carriers scatter as they move through the material?
• How do the boundaries and interfaces impede carriers?

The answers to these questions require a much deeper perspective on
the mechanisms of thermal energy transport than is provided in traditional
engineering expositions on heat conduction. Thus we embark here on the
first of two background chapters: the present on lattice structure and the
subsequent on statistics of energy carriers.

Fig. 1.1 Schematic of a general contact-device-contact arrangement.

The study of thermal energy in any material should rightly begin with
a description of the material itself, for thermal energy, unlike other forms
of energy such as optical, electronic, and magnetic, is routinely generated,
stored, and transported by a diverse set of ‘carriers’. The reason for broader
context of thermal energy derives from the second law of thermodynamics,
which dictates that all forms of energy tend toward disorder (or ‘thermal-
ization’). In this text, we will make every reasonable attempt to unify the
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analysis, i.e., to generalize concepts so that they apply to multiple carriers,
but this objective is occasionally elusive. In such cases, the text will make
clear the relevant restrictions by carrier and material types. The list of in-
teresting materials and physical structures is almost endless, and therefore
given the subject of ‘nanoscale’ physics, the text begins with an admittedly
cursory treatment of interatomic bonding but then highlights where possi-
ble a compelling structure — the graphene carbon lattice — to illustrate
important and unique thermal behavior at the nanoscale.

1.2 Atom-to-Atom Bonding in Solid Lattices

The details of interatomic bonding determine a broad assortment of physi-
cal material properties, ranging from mechanical strength to electrical con-
ductivity. The primary interest here relates to the resultant vibrational
characteristics of atoms that exist in an ordered arrangement, i.e., in a reg-
ular crystal. However, we start with a simpler situation: that of a diatomic
molecule.

Figure 1.2 shows a schematic of two atoms separated by an equilibrium
distance r = r0 about which the atoms vibrate at various (but restricted)
frequencies. A generic potential energy field U(r) between the atoms is
shown in the bottom half of the figure, revealing the strong repulsive force
(F = −∂U/∂r) when the atoms are close together (r < r0). The minimum
energy (at r = r0) corresponds to the bond energy, as the potential energy
asymptotes to zero when the atoms are pulled apart (r → ∞).

The mathematical form of the potential can be very complicated and
is itself the subject of intensive research through both first-principles
(ab initio) approaches such as density functional theory (Saha et al., 2008)
and empirically derived potentials (Tersoff, 1988). For the time being, we
consider a simplification of the potential, focusing on the near-minimum
region where the potential is typically well approximated by a parabolic
relation with respect to the equilibrium displacement u = r − r0 such that
U ∼ u2. The constant of proportionality plays an important role in the dy-
namics of molecules and lattices, for it contains the effective spring constant
g of the bond:

U =
1
2
gu2. (1.2)

This so-called harmonic approximation is depicted in Fig. 1.3. We note
that lattice vibrations typically involve small displacements; therefore, the
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Fig. 1.2 Variation of potential energy field U(r) with interatomic distance r. r = r0

corresponds to the equilibrium separation with minimum potential energy.

harmonic approximation tends to predict the overall vibrational states (or
what we will call the vibrational eigenspectrum) with good accuracy. The
deviations, or anharmonicities, however, play an important role in phonon
scattering, as discussed in Chapter 5.

One issue that we will cover only briefly is how such bonds form. Refer-
ring to Fig. 1.4, when two self-contained atoms [Fig. 1.4(a)] are brought to-
gether [Fig. 1.4(b)], their electrons can interact and begin to share orbitals.
However, the energies of the orbitals must change because of restrictions
imposed by the Pauli exclusion principle on the quantum states of electrons;
therefore, upon bonding, the energy levels depicted by horizontal lines in
Fig. 1.4, undergo small shifts.

These electronic interactions define the nature and strength of inter-
atomic bonds and can produce many different bond types and energies
(Eb), including:

• van der Waals: weak bond due to dipole moments, Eb ∼ 0.01 eV
• Hydrogen: due to electronegative atoms (e.g., O in H2O), Eb ∼

0.1 eV
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Fig. 1.3 Harmonic approximation to the real interatomic potential with anharmonicity.
At small displacements, the harmonic potential is a good approximation.

• Covalent: atoms share valence electrons (e.g., Si and diamond),
Eb = 1 ∼ 10 eV

• Ionic: one atom gives up its electron, forms ions with Coulombic
binding forces, Eb = 1 ∼ 10 eV

• Metallic: like covalent bonds, but with freely moving electrons,
Eb = 1 ∼ 10 eV

We will focus on thermal energy in solid materials, but some of the con-
tent such as kinetic theory in Chapter 3 applies equally well to fluid phases.
Within the array of solid-state materials, single-crystal structures are the
most amenable for initial study, although even these structures become
rather complex in three dimensions with various atomic arrangements such
as face-centered cubic (fcc), body-centered cubic (bcc), and diamond config-
urations that are perhaps most familiar to readers. To minimize digression,
here we refer the reader to the many excellent textbooks on solid-state
physics (Ashcroft and Mermin, 1976; Kittel, 2007) and crystallography
(De Graef and McHenry, 2012) for advanced treatment of 3D crystals.

We will focus on one- and two-dimensional lattices for the sake of
expediency and because the 2D graphene lattice has high contemporary
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Fig. 1.4 (a) Two isolated, self-contained atoms and associated electron energy states.
(b) Quantized energy states upon bond formation between the two isolated atoms. En-
ergy levels are modified as electron orbitals become shared in a bond.

scientific and technological importance. A simple 1D structure is obtained
by repeating the diatomic arrangement of Fig. 1.2 indefinitely. Figure 1.5
shows the resulting configuration, with each atom of mass m connected to
its neighbor by a bond with spring constant g. The equilibrium separation
between atoms is represented by the lattice constant a. Somewhat sur-
prisingly, this simple, idealized structure will enable us to develop almost
all the essential tools for analysis of lattice vibrations and their quantum
manifestation—called phonons.

Because an ideal crystal extends infinitely in all directions, we must find
a way to concentrate the analysis on a smaller region. Fortunately, the regu-
lar order, or periodicity, of a crystal lattice makes this task straightforward.
A primitive unit cell of a lattice is one that, if repeated throughout all space
by well-defined translational vectors, would fill the space entirely and with
no overlapping regions or void spaces. Figure 1.6 shows an example for a
2D monatomic rectangular lattice. Several possible shapes, positions, and



September 14, 2013 12:6 World Scientific Book - 9in x 6in B1652 ch01

Lattice Structure, Phonons,and Electrons 7

Fig. 1.5 An ideal 1D crystal modeled as periodic atom-spring-atom system.

orientations of the primitive unit cell exist for this lattice, as indicated by
the shaded regions. The arrows denote basis vectors (#ai) that define the
periodic translation of the unit cells throughout the domain. The set of all
possible translations by integer indexing of basis vectors forms a so-called
Bravais lattice, whose discrete points are given by the lattice vector #R:

#R =
∑

i

ni#ai
in 2D= n1#a1 + n2#a2. (1.3)

For the linear 1D chain, the sole lattice vector is simply the lattice
constant a.

Fig. 1.6 An ideal 2D monatomic rectangular lattice represented by periodic translation
of valid primitive cells (shaded green) defined by green basis vectors.

As might be expected given the complexity of our natural world, a
Bravais lattice alone cannot describe the atomic positions of all real crys-
tals. For such cases, we resort to defining the positions of multiple atoms
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(usually two) at each nodal site in the Bravais lattice. This approach is
quite understandable for compounds such as crystalline SiO2 (quartz), but
it is also necessary to describe the lattice geometry of some monatomic crys-
tals, including technologically important ones such as silicon and diamond.
Figure 1.7 shows the crystal construction in 2D, with the multi-atom basis
pair placed regularly on spatially distributed Bravais lattice points.

Fig. 1.7 Structure of a two-atom basis crystal. Each nodal site of the lattice contains a
two-atom basis that defines the complete crystal structure upon translation through all
possible lattice vectors.

One of the most fascinating 2D lattices, and one of intense contemporary
study, is graphene, which consists entirely of carbon atoms in hexagonal
arrangement on a 2D plane as shown in Fig. 1.8. The equilibrium distance
between nearest carbon atoms is ã = 1.42 Å, where the ‘˜’ denotes a bond
length (often the lattice constant and bond lengths differ for more complex
lattices). Different edge configurations are possible in graphene, and the
two most common are shown in the figure. Importantly, graphene is one
of the monatomic structures that requires the addition of a basis atom to
describe the full lattice. Its basis vectors, as shown in Fig. 1.9, are:

#a1 =
3
2
ãx̂ +

√
3

2
ãŷ

#a2 =
3
2
ãx̂ −

√
3

2
ãŷ.

(1.4)

The vector that connects the primary and basis atoms within a unit cell is
simply #ab = ãx̂.
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Fig. 1.8 Graphene nanoribbon crystal structure. The left structure is the armchair
configuration; the right structure is zigzag. Dashed rectangles represent a graphene
nanoribbon unit cell. The unit cell for each configuration is displayed below the crystal
lattice structure.

1.3 Mathematical Description of the Lattice

The analysis of crystals can seem challenging in comparison to that of
individual molecules because of the former’s vast size. To overcome this
challenge, we take advantage of a crystal lattice’s translational symmetry.
This approach requires a mathematical description that inverts space such
that large entities become small.

We describe something large in terms of small things in the common
way–with Fourier transforms. We start again with 1D chain of atoms and
allow for the possibility that these atoms have a distributed mass den-
sity ρ. Perfect periodicity with lattice constant a (see Fig. 1.10) implies
that:

ρ(x + ma) = ρ(x), (1.5)

where m is any integer.
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Fig. 1.9 Basis vectors for the graphene crystal structure.

Fig. 1.10 Perfect periodic 1D chain of atoms with lattice constant a.

Each density function ρ(x) and ρ(x+ma) can be expanded in a Fourier
series such that Eq. (1.5) becomes:

ρ(x) =
∑

n

ρn exp {iGnx}

= ρ(x + ma) =
∑

n

ρn exp {iGn(x + ma)}

=
∑

n

ρn exp {iGnx} exp {iGnma} , (1.6)

→ exp {iGnma} = 1 → Gnma = 2π × integer, (1.7)

where n and m are indexing integers. The last relation, Eq. (1.7), severely
restricts the possible values of G. This restriction should not be surprising
because the original density function, ρ, is strictly periodic and in the limit
of point masses represents a series of delta functions. In fact, the series of
real-space lattice points at a, 2a, 3a, . . . for this simple 1D problem is simply
the Bravais lattice vector defined by #R = nax̂.
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Extending to multiple dimensions, the restrictive relation between #G
and #R is:

#Gn · #Rm = 2π × integer. (1.8)

The vector #G thus becomes critically important in the description of
lattices–the reciprocal lattice vector. In the interest of brevity and follow-
ing the lead of Ziman, we will not be “concerned here with mathemati-
cally pathological functions, and may use naive Fourier theory quite freely”
(Ziman, 1972). As such, we will simply state the relations between recip-
rocal lattice translation vectors #bi and the direct lattice translation vectors
#ai in 3D:

#G = k1
#b1 + k2

#b2 + k3
#b3, (1.9)

where

#bi = 2π
#aj × #ak

#a1 · (#a2 × #a3)
, (1.10)

and ki are integers, and the denominator in Eq. (1.10) is the unit cell
volume.

Once the #bi vectors are known, the reciprocal space can be populated
with discrete points. We will focus on 2D graphene here. Analysis of the
primitive translational vectors in Eq. (1.4) in the context of Eq. (1.8) reveals
that we must have #b1 ⊥ #a2 and #b2 ⊥ #a1 and that

#b1 = C1

[√
3

2
x̂ +

3
2
ŷ

]

#b2 = C2

[√
3

2
x̂ − 3

2
ŷ

]
. (1.11)

The constants C1 and C2 must be equal to preserve the generality of
Eq. (1.8), and given the magnitude of the vectors |#ai| =

√
3ã, we find:

C1 = C2 =
4π

a3
√

3

→ #b1 =
2π
ã

[
1
3
x̂ +

1√
3
ŷ

]

→ #b2 =
2π
ã

[
1
3
x̂ − 1√

3
ŷ

]
. (1.12)
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The resulting lattices, both direct (a) and reciprocal (b), for graphene
are shown in Fig. 1.11, as well as the respective translational vectors and
the so-called 1st Brillouin zone, which is hexagonal in shape. The reciprocal
lattice’s primitive cell (i.e., 1st Brillouin zone) is established by connecting
lattice points with lines, which then define the shaded region of 2D space
closest to a given lattice point.

Fig. 1.11 (a) Direct graphene lattice. (b) Reciprocal graphene lattice. The primitive
cell of the reciprocal lattice is the 1st Brillouin zone. Translation vectors of both lattices
are also depicted.

Reciprocal space is often termed ‘k-space’, and we will use the terms
interchangeably. Reciprocal space is also useful in defining directions in a
crystal. For a given real-space lattice plane, the Miller indices (k1k2k3) are
vector coordinates (see Eq. (1.12)) of the shortest reciprocal lattice vector
normal to the plane. The Miller indices should not be confused with the
primary directions in the real-space lattice, which are denoted by square
brackets [xyz].
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1.4 Lattice Vibrations and Phonons

The description of lattice vibrations starts with the potential-
energy/displacement relation of Eq. (1.2). When constructed as a linear
chain of atoms, the individual potential energies from each compressed or
expanded spring are summed to form the harmonic potential energy Uharm:

Uharm =
1
2
g

∑

n

{u[na] − u[(n + 1)a]}2, (1.13)

where the terms na and (n+1)a designate the spatial positions of the atoms.
The force on an individual atom (at, say, location na) can be calculated
from the spatial derivative of displacement at that location:

F = m
d2u(na)

dt2
= −∂Uharm

∂u(na)
= −g {2u(na) − u [(n − 1)a] − u [(n + 1)a]} ,

(1.14)

where the factor 2 appearing in 2u(na) is the result of the fact that loca-
tion ‘na’ appears twice in the summation of Eq. (1.13) (once as (n + 1)a
and then as na as the sum proceeds). The ‘na’ nomenclature becomes
quite tedious in practice, and we therefore simplify the expression of
Eq. (1.14) as:

m
d2un

dt2
= −g {2un − un−1 − un+1} . (1.15)

The solution of Eq. (1.15) requires boundary conditions, and the sim-
plest are the so-called Born-von Karman type in which the ends of the 1D
chain are attached as in a loop (see Fig. 1.12). We note that this ‘loop’
does not add a new dimension to the problem, as the number of atoms N
is assumed to be very large.

The Born-von Karman boundary conditions become:

uN = u0

uN+1 = u1.
(1.16)

We assume a plane-wave solution for displacement at location n as:

un(t) ∼ exp {i (Kna − ωt)} , (1.17)
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Fig. 1.12 1D chain of N atoms with the Born-von Karman boundary condition.

where K is the wavevector of the plane wave and is proportional to the
inverse of wavelength. Application of Eq. (1.17) to the boundary conditions
above yields:

uN+1 ∼ exp {i [K (N + 1) a − ωt]}

u1 ∼ exp {i [Ka − ωt]}

→ 1 = exp [iKNa] → KNa = 2πn, (1.18)

where n is an indexing integer. The final relation in Eq. (1.18) is of crucial
importance, for it restricts the possible values of the wavevector K that
can ‘fit’ on the looped 1D chain. Of course, if the number of total atoms
N is large, then many wavevectors are possible. Defining the wavelength
as λn = aN/n, the set of allowed wavevectors becomes:

Kn =
2πn

aN
=

2π
λn

. (1.19)

Finally, we note that the minimum size of a wave (wavelength) is
λmin = 2a, for any shorter waves would not have atoms to sustain them.
Another way of explaining this characteristic is that any smaller wave-
lengths would have nodal positions (in the standing wave sense) that could
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be described by longer waves in which the nodal positions would exist on
lattice sites, instead of between atoms. Consequently, the maximum unique
wavevector is:

|Kmax,unique| =
π

a
. (1.20)

This important restriction enables us to convert what is an infinite domain
in real space (as N → ∞) into a finite domain in reciprocal space (K ∈
[−π/a,π/a]), with the associated advantages of mathematical convenience.
Importantly, this unique region of reciprocal space (or k-space) coincides
with the 1st Brillouin zone.

We now return to the equation of motion, Eq. (1.15), and its solution.
Substitution of the plane-wave function of Eq. (1.17) for position na and
incorporation of the discrete wavevectors Kj produces:

− mω2
j ei(Kina−ωjt) = −g

[
2 − e−iKja − eiKja

]
ei(Kjna−ωjt)

= −2g (1 − cosKja) ei(Kjna−ωjt). (1.21)

The resulting relationship between frequency and wavevector defines the
dispersion relation of the lattice:

ωj(Kj) =

√
2g(1 − cosKja)

m
= 2

√
g

m

∣∣sin(1
2Kja)

∣∣ . (1.22)

The continuous form of this relation (ω(K), which we will use hereafter,
dropping the subscript j) is sketched in Fig. 1.13. We note that the max-
imum frequency depends quite simply on the spring constant and atomic
mass, as ωmax = 2

√
g/m.

The dispersion relation contains information pertinent to a wide range
of material characteristics, from elastic constants to the scattering rates of
phonons. We will discuss many of these in context throughout the remain-
der of the text. For now, we highlight the phase and group velocities:

phase velocity: c =
ω

K
, (1.23)

group velocity: vg =
∂ω

∂K
. (1.24)



September 14, 2013 12:6 World Scientific Book - 9in x 6in B1652 ch01

16 Thermal Energy at the Nanoscale

Fig. 1.13 Dispersion relation for a monatomic 1D chain of atoms.

Most of our interest will be given to the group velocity because it de-
termines the rate of energy transport. Further, we will often focus on the
long-wave limit (K → 0), for which:

lim
K→0

ω = a

√
g

m
|K|

→ lim
K→0

vg = a

√
g

m
=

∣∣∣
ω

K

∣∣∣ = c. (1.25)

In this limit, the group and phase velocities are equal, and they both are the
same as the speed of sound in the solid. Therefore, the types of phonons
that exhibit this behavior (other types are considered later) are termed
acoustic phonons.

Thus far we have used strictly classical descriptions of mechanical vibra-
tions to derive the vibrational spectrum of the lattice. However, to treat
collections of vibrations (because a lattice can support many vibrational
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modes at the same time), we must transition to a quantum description.
Nevertheless, we can retain the results from the classical harmonic oscil-
lator solution above to define each normal mode in terms of a wavevector
K and frequency ω (i.e., the dispersion relation remains valid). A solution
of the time-independent Schrödinger equation of quantum mechanics (see
Eq. (1.31) in the next section) reveals that each mode can contain a set of
energies described by:

εK =
(
NK + 1

2

)
!ωK , (1.26)

where NK represents the number of phonons with wavevector K, and the
terminology ωK is intended to signify the inherent relationship between fre-
quency and wavevector embodied by the dispersion relation (Eq. (1.22)).
The 1

2 term in Eq. (1.26) accounts for the so-called zero-point energy whose
derivation is available elsewhere (Ashcroft and Mermin, 1976, Appendix L).
The term NK defines the average number of such excited modes of
wavevector K, or the number of phonons, and is defined by Bose-Einstein
statistics:

NK =
1

exp
(

!ωK
kBT

)
− 1

, (1.27)

where kB is Boltzmann’s constant, and T is temperature. We will later use
the symbol fo

BE as a synonym for NK (in attempt to maintain some consis-
tency while also identifying various symbols that are used in the literature
for the occupation number).

The connection between the quantum energy of Eq. (1.26) and the clas-
sical vibration amplitude is often elusive to new learners and is therefore
included here to connect with mechanical intuition. Classically, each vi-
brational mode contains a combination of potential and kinetic energy that
can be shown to be, on average, equal in magnitude by the virial theorem
(Ashcroft and Mermin, 1976) such that:

ε̄classical =
∑

lattice

m |u̇|2 , (1.28)

where the“ ˙ ” denotes time differentiation. For a simple lattice of N atoms
with one atom of mass m per unit cell, the summation can be transformed
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to reciprocal space as:

ε̄classical =
∑

K

Nmω2
K |ũK |2 , (1.29)

where |ũK | is the amplitude of atomic displacement for a mode with
wavevector K. Equating the summed term in Eq. (1.29) with the quantum
version (Eq. (1.26)), the relationship between displacement amplitude and
(quantized) energy becomes:

|ũK |2 =
εK

Nmω2
K

=
(
NK + 1

2

)
!

NmωK
. (1.30)

This result should be intuitive, for it indicates that displacement amplitude
increases with increasing occupation number and decreases with increasing
frequency, both in the square-root sense. An illustration of phonon quanti-
zation, showing the relationship between allowed energies and atomic dis-
placements, is shown in Fig. 1.14. For further details, the reader is referred
to Ziman (1972).

Still remaining in our development is the extension of the foregoing
principles of dispersion and energy to multiple dimensions and orientations
of oscillations relative to the propagation direction (i.e., polarization). We
defer these subjects to later chapters, when they can be developed in better
context.

1.5 Free Electrons

Electronic behavior varies widely among different types of materials, from
‘free’ conduction in metals to virtually none in insulators. In this chap-
ter we will consider only metals, and even then we will use the simplest
approximation–free electron theory. Later chapters elucidate more compli-
cated electronic structure.

The fundamental equation governing quantum particles is Schrödinger’s
equation, whose time-independent form is:

−!2

2me
∇2Ψ(#r) + V(#r)Ψ = EΨ(#r), (1.31)
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Fig. 1.14 Discrete energy levels depict phonon quantization. Successive energy levels
are separated by !ω.

where Ψ is the electron wavefunction, and V(#r) represents a potential energy
function that commonly represents the periodic ion field in a crystal. How-
ever, V(#r) = 0 is assumed to make electrons ‘free’ in the present simplifi-
cation. The wavefunction determines the probability per unit volume P of
finding an electron at position #r according to:

P =
∣∣Ψ(#r)2

∣∣ = Ψ(#r)Ψ∗(#r), (1.32)

where the “∗” denotes complex conjugation. Once again, we assume a
plane-wave solution (in this case, a steady-state form):

Ψk(#r) =
1√
V

ei"k·"r, (1.33)

where V is volume and #k is the electron’s wavevector.1 Substitution into
the governing equation yields an expression for the energy eigenvalue Ek:

Ek =
!2k2

2me
, (1.34)

1We will use the lowercase symbol k for electrons, and the uppercase K for phonons to
signify the carrier type. The term k-space is generic and applies to either.
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where k =
∣∣∣#k

∣∣∣. Equation (1.34) relates electron energy and wavevector
and is the dispersion relation for electrons, analogous to Eq. (1.22) for
phonons. In this case, the functional relationship is parabolic, Ek ∼ k2.
Such parabolic dispersion relations (or bands) are common in real materials,
even for those with complicated electronic structures.

The parabolic ‘E−k’ relation suggests a connection between wavevector
and momentum. The usual Newtonian expressions for momentum p and
energy become:

|p| = me |v| ; E =
mev2

2
→ v =

√
2E

me

→ |p| = me

√
2E

me
=

√
2Eme =

√
!2k2 = !k

→ #p = !#k.

(1.35)

The final result indicates that the wavevector can be considered a surrogate
for momentum.

The momentum of electrons is restricted to certain allowed states, as it
was for phonons. For the free electron gas, we can determine these values by
considering an electron in a cube (the so-called ‘electron in a box’ problem).
The wavefunction and its corresponding probability functional in Eq. (1.32)
are assumed to be spatially periodic (see Fig. 1.15), such that:

Ψ(x + L) = Ψ(x); Ψ(y + L) = Ψ(y); Ψ(z + L) = Ψ(z). (1.36)

Combining these periodic conditions with the plane-wave solution of
Eq. 1.33 produces a set of allowable wavevectors:

eikxL = eikyL = eikzL = 1

→ kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, ni = 1, 2, 3, . . .

. (1.37)

This result should be familiar, for it is the same as that for phonons in the
linear chain (Eq. (1.19)) for L = aN , the chain length. Therefore, allowable
wavevectors are separated by 2π/L in reciprocal space; this characteristic
will be useful in the next chapter in deriving the so-called density of states.

An important difference exists, however, between the manner in which
the allowed wavevectors are populated for electrons and phonons. The lat-
ter can populate a state with a limitless number whose average (which need
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Fig. 1.15 Electron in a cube with a spatially periodic wavefunction.

not be an integer) is given by Eq. (1.27). Conversely, the electron occupa-
tion number of a given state is limited by the Pauli exclusion principle to
be either 0 (not occupied) or 1 (occupied). Therefore, free electrons readily
fill the reciprocal space until the number of carriers is exhausted.

Consider a material that contains N ′ free electrons in a volume of real
space V . The ratio of these is the electron density ηe = N ′/V . Be-
cause each allowed state occupies a reciprocal-space volume of (2π/L)3, the
number of electrons can be expressed in terms of a spherical ‘volume’ of
k-space as:

N ′ = 2

(
4πk3/

3
)

(
2π/L

)3 =
k3

F

3π2
V, (1.38)

where kF is called the Fermi wavevector and represents the largest occupied
state at absolute zero temperature (the next chapter considers non-zero
temperatures). The factor 2 in Eq. (1.38) accounts for the two electron
spin states–up and down.

Other Fermi quantities can be easily derived from the Fermi wavevector:

Fermi wavevector: kF =
(
3π2ηe

)1/3
, (1.39)

Fermi energy: EF =
!2k2

F

2me
=

!2

2me

(
3π2ηe

)2/3
, (1.40)
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Fermi velocity: vF =
!kF

me
=

!
me

(
3π2ηe

)1/3
, (1.41)

Fermi temperature: θF =
EF

kB
=

!2

2mekB

(
3π2ηe

)2/3
. (1.42)

The Fermi energy EF is the most commonly used, and as shown in
Eq. (1.40), can be calculated from the electron density. The Fermi ve-
locity vF is also an important quantity because even though the electron
velocities cover a very broad range, only states near the Fermi level are
active in conduction because of the nearby availability of unoccupied states
necessary to produce transport.

A sketch of the filled and empty energy levels is shown in Fig. 1.16.
By convention, the zero energy datum is chosen to sit at the bottom of
the conduction band, with non-conducting core electron states beneath.
The electrons fill energies upward until they reach the Fermi energy and
are contained in the solid by an energy barrier called the work function
φ, which is the difference between the vacuum energy Evac and Fermi
energy EF .

1.6 Example: 1D Atomic Chain with a Diatomic Basis

We choose a diatomic 1D chain of atoms as shown schematically in Fig. 1.17
to demonstrate a slightly more complicated situation than the monatomic
chain of Section 1.4. The 2-atom basis produces an entirely separate phonon
branch, as derived below.

For details of phonon analysis for linear chains, the reader is referred to
Chapter 2 of Ziman (1972). We note that the definition of a here, which is
the distance between unit cells, is a bit different from Ziman’s, which does
not span a full unit cell but rather the distance between atoms within a cell.
Here we include the essential elements starting again with the Lagrangian
mechanics relation, F = mü = −∇Uharm (cf., Eq. (1.14)), where F is
the force on a particle of mass m with displacement u, and again Uharm

is the potential energy of the entire many-body system. Given the one-
dimensional nature of the present formulation, we drop the spatial vector
notation.



September 14, 2013 12:6 World Scientific Book - 9in x 6in B1652 ch01

Lattice Structure, Phonons,and Electrons 23

Fig. 1.16 Sketch of filled and empty electron energy states. The work function, φ,
is defined as the difference between the Fermi energy, EF , and the vacuum energy,
Evac.

Fig. 1.17 Schematic of a 1D atomic chain with a two-atom basis.

In comparison to the monatomic chain, the index accounting for dif-
ferent atoms is more difficult when a basis atom is added (as well as any
additional displacement dimensions not considered here); consequently, a
matrix-based approach is required. To account for the discreteness of the
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system, we represent each atom’s displacement as un,α where α is the basis
index (1 or 2) and n is the unit cell index. The equation of motion becomes
(Ziman, 1972):

mαün,α = −
∑

m,β

∂2Uharm

∂un,α∂um,β
um,β = −

∑

m,β

Φm,β
n,α um,β, (1.43)

where Uharm for this 2-atom basis is:

Uharm =
1
2
g

∑

n

(un,1 − un,2)
2 + (un,2 − un+1,1)

2. (1.44)

The matrix Φm,β
n,α (hereafter called the ‘force constants matrix’) contains

the interatomic force constants between each atom pair (i.e., (n,α) and
(m,β)). Inspection of Eqs. (1.43) and (1.44) reveals:

Φn,1
n,1 = Φn,2

n,2 = 2g

Φn,1
n,2 = Φn,2

n,1 = Φn−1,2
n,1 = Φn+1,1

n,2 = −g.
(1.45)

Recognizing the symmetry of the problem (i.e., that all unit cells are
identical) and using a left-to-right numbering scheme, the force constants
matrix becomes:

Φ =
[

2g −g
−g 2g

]
. (1.46)

From the translational symmetry of the chain, the unit cell indices n and
m can be replaced by 0 and p, respectively, where p is simply an index that
begins at 0 and increases in unit steps away from the cell of interest (i.e.,
0). The Fourier transform of this matrix becomes the so-called dynamical
matrix of lattice dynamics analysis (Young and Maris, 1989):

Dβ
α =

1
√

mαmβ
Φp,β

0,αei "K·"rp

=




2g
m1

−g√
m1m2

(
1 + e−iKa

)

−g√
m1m2

(
1 + e+iKa

) 2g
m2



 ,

(1.47)

where #rp is the distance between the unit cells of the pair of atoms under
consideration and implied summation applies to the index p. The dynamical
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matrix emerges as part of the governing equation of motion (Eq. (1.43)) cast
in frequency space:

ω2ũα(K) =
1

√
mαmβ

Φpβj
0αie

iK·"rp ũβ(K) = Dβ
αũβ(K), (1.48)

where ũ is the amplitude of displacement. The so-called secular equation
emerges from the foregoing expression and is used the extract the eigenval-
ues ω2:

det
∣∣D− ω2I

∣∣ = 0, (1.49)

where I is the identity matrix (2 by 2 in this case). The solution of Eq. (1.49)
provides a form of the dispersion relation:

ω4 − 2g

(
1

m1
+

1
m2

)
ω2 +

4g2

m1m2
sin2

(
Ka

2

)
= 0. (1.50)

Using quadratic reduction, the foregoing result can be solved for ω2:

ω(K)2 = g

(
1

m1
+

1
m2

)
± g

√(
1

m1
+

1
m2

)2

− 4
m1m2

sin2

(
Ka

2

)
.

(1.51)

The ‘±’ term in Eq. (1.51) produces the peculiarity of having two possible
branches. The lower branch (defined as having the lower frequency, repre-
sented by ω−) is the acoustic branch and is equivalent to that derived for
the monatomic chain (Eq. (1.22)). The upper branch (ω+), called the opti-
cal branch, is new and represents generally out-of-phase vibrations between
neighboring atoms (i.e., the displacements of neighboring atoms are nearly
equal and opposite). The limiting forms at the Brillouin zone origin and
edges for both branches are:

lim
K→0

ω−(K) = Ka

√
gµ

2m1m2
; lim

K→0
ω+(K) =

√
2g

µ
, (1.52)

ω−

(
K =

π

a

)
=

√
2g

m2
; ω+

(
K =

π

a

)
=

√
2g

m1
, (1.53)

where µ = (1/m1 + 1/m2)−1, and m2 is the heavier of the two masses.
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The two branches of the dispersion are shown in Fig. 1.18. The curves
reveal an energy band gap between the branches that grows with increasing
contrast between the two atomic masses. Moreover, the shape of the optical
branch takes a generally flat character, suggesting that the group velocity
(dω/dK) is relatively small. Consequently, optical phonons are often ne-
glected in the calculation of thermal conductivity, in favor of the acoustic
branch.

Fig. 1.18 Normalized frequency as a function of normalized wavevector for a diatomic
1D chain with m2 = 2m1.

Finally, we address a common source of confusion related to the ap-
plication of the diatomic dispersion results to the case of m1 = m2 (i.e.,
the monatomic case). Figure 1.19 shows the dispersion curve for the range
K ∈ {−π/a,π/a}. Notably, the solution still predicts the presence of an
optical mode, and thus one might wonder whether the optical mode is sim-
ply an artifact of mathematics. However, careful inspection reveals that the
condition m1 = m2 produces one-eighth of a full sine wave for the acoustic
branch in the range K ∈ {0,π/a} instead of the usual quarter sine wave
(cf., Figs. 1.13 and 1.18). The reason for this change is that the diatomic
analysis uses a lattice constant a = 2ã that is exactly twice as large as that
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for the monatomic case (a = ã) for this special case of m1 = m2. There-
fore, the range of K sampled in Fig. 1.19 is only half that of Fig. 1.13. The
missing portion of the dispersion curve is actually contained in the optical
branch, as shown in Fig. 1.19, which spans K ∈ {0, 2π/a} and shows the
completion of the quarter sine wave by the ‘virtual’ optical branch. This
result provides an example of the importance of defining the primitive unit
cell, from which the 1st Brillouin zone derives, as the smallest symmetric
region necessary to fill exactly all space through the translation vector #R.

1.7 Conclusion

This chapter has laid a foundation in crystallography and the fundamentals
of phonons and electrons, albeit in a highly idealized and simplified form.
Often the mathematics of these fundamentals can obscure more intuitive
or at least more familiar understanding. For example:

• The speed of sound in silicon (Si) is approximately 6400 m/s.
With its nearest neighbor distance of 0.235 nm and atomic mass
of 28.0855 g/mol, it is a straightforward exercise to estimate the
spring constant from the K → 0 limit (Eq. (1.25)) as g = 35 N/m,
which is remarkably similar to the actual value (Zhang et al., 2007).

• Many metals have Fermi energies near EF = 5 eV. The corre-
sponding Fermi velocity is vF =

√
2EF /me ≈ 106 m/s, which

is roughly two orders of magnitude less than the speed of light,
c0 = 2.99792458× 108 m/s.

Lastly, we include here a brief glossary of some the concepts covered in
this chapter:

• Primitive Cell: A region of space that is closer to one point than
any others.

• Bravais Lattice: A distribution of points in space that defines a
repeating pattern.

• 1st Brillouin Zone: The primitive cell of the reciprocal lattice.
• Miller Indices: Coordinates (hkl) of the shortest reciprocal lat-

tice vector normal to a given real-space plane.
• Group Velocity: The speed at which phonons carry energy in a

lattice (see Eq. (1.24)).
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Fig. 1.19 Normalized frequency as a function of normalized wavevector for a diatomic
1D chain, for the special case of m1 = m2. (a) The usual range K ∈ {−π/a, π/a}. (b)
The range K ∈ {0, 2π/a}.
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• Normal Mode: A lattice wave that is characterized by a branch,
wavevector, and frequency (and, later, polarization).

• Phonon: a quantized lattice vibration (i.e., one that can take on
only a discrete energy, !ω).

• Acoustic Phonons: Phonons that determine the speed of sound
in a solid and are characterized by ω ∼ K as K → 0.

• Optical Phonons: Phonons that have flat dispersion, low group
velocity, and are characterized by non-zero ω as K → 0.

• Occupation Number: The number of carriers with a given
wavevector.
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Example Problems

Problem 1.1: Graphene reciprocal lattice

The primitive lattice vectors (#a1, #a2) of graphene are given by:

#a1 =
3
2
ãx̂ +

√
3

2
ãŷ,

#a2 =
3
2
ãx̂ −

√
3

2
ãŷ,

where ã is the C-C bond length. Calculate the reciprocal lattice vectors
#b1, #b2 of graphene. Show that the primitive unit cell of the reciprocal
lattice (also known as the 1st Brillouin zone) is a hexagon with a side
length of 4π

3
√

3ã
.

Solution

The primitive lattice vectors are:

#a1 =
3
2
ãx̂ +

√
3

2
ãŷ, #a2 =

3
2
ãx̂ −

√
3

2
ãŷ, #a3 = cẑ, (1.54)

where c is an arbitrarily large constant (no periodicity exists in the z
direction). The reciprocal lattice vectors are then given by:

#b1 = 2π
#a2 × #a3

#a1 · (#a2 × #a3)

=
2π
ã

(
1
3
x̂ +

1√
3
ŷ

)
, (1.55)

#b2 = 2π
#a3 × #a1

#a1 · (#a2 × #a3)

=
2π
ã

(
1
3
x̂ − 1√

3
ŷ

)
, (1.56)

#b3 = 2π
#a1 × #a2

#a1 · (#a2 × #a3)

=
2π
c

ẑ, (1.57)
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where #b3 → 0 as c → ∞ indicating that the reciprocal lattice is two-
dimensional. Figure 1.20 shows the process involved in construction of
the reciprocal lattice. The Γ point of the reciprocal lattice is joined to
its six nearest neighbors given by the points #b1 (point A), #b2 (point C),
#b1 +#b2 (point B), −#b1 (point D), −#b2 (point F) and −#b1−#b2 (point E).
Perpendicular bisectors (red dotted lines in Fig. 1.20) are then drawn
for each of these six line segments ΓA, ΓB, ΓC, ΓD, ΓE and ΓF. The
region of intersection of these perpendicular bisectors forms the hexag-
onal Brillouin zone of graphene.

The side of the hexagon can be obtained from simple trigonometry.
∠MΓK = 1

2∠MΓB = 30◦. Thus MK = ΓM/
√

3 = |#b1|/2
√

3 =
2π/3

√
3ã. One side of the hexagonal Brillouin zone is 2MK =

4π/3
√

3ã.

Fig. 1.20 Construction of the graphene Brillouin zone.
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Problem 1.2: Dispersion relation for a 1D chain

(a) Consider a monoatomic 1D chain with nearest neighbor interac-
tions. Assume a spring constant g = 25 N/m, atomic mass m =
28 amu and a lattice spacing of 5 Å. Calculate the sound velocity
and the maximum possible phonon frequency.

(b) Now we generalize the monoatomic chain to include long-range in-
teractions among atoms. Assume that the spring constant between
two atoms separated by a distance of ja is given by gj where j is
an index that can take values 1, 2, 3 and so on. Show that the new
dispersion relation is given by:

ω = 2

√√√√
∑

j

gj sin2(1
2jKa)

m
.

Solution

(a) Sound velocity is given by:

c = a

√
g

m
= 11594 m/s, (1.58)

where mass is converted to kg (1 amu = 1.6605 × 10−27 kg). The
maximum phonon frequency is given by:

ωmax = 2
√

g

m
= 4.63 × 1013 rad/s, (1.59)

(b) When interactions are considered between all pairs of atoms, the
equation of motion for the atom at position na is given by:

m
d2u(na)

dt2
=

j=∞∑

j=1

gj(u[(n + j)a] − u(na)) − gj(u(na) − u[(n − j)a])

=
j=∞∑

j=1

gj(u[(n + j)a] − 2u(na) + u[(n − j)a]). (1.60)

Substituting the plane wave solution u(na) = exp (i(Kna − ωt))
into the above equation produces:
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− mω2 =
j=∞∑

j=1

gj(exp (ijKa) − 2 + exp (−ijKa))

=
j=∞∑

j=1

−4gj sin2

(
jKa

2

)
. (1.61)

Thus the generalized dispersion relation is given by:

ω = 2

√√√√
j=∞∑

j=1

gj sin2(1
2jKa)

m
. (1.62)

Problem 1.3: Kinetic energy of the free electron gas

Obtain an expression for the total kinetic energy of the free electron
gas at T = 0 K. Express your answer in terms of the Fermi energy EF

and the total number of electrons N .

Solution

The following expressions for Fermi wavevector and Fermi energy were
derived in the chapter:

kF = (3π2ηe)1/3, EF =
!2k2

F

2me
=

!2

2me
(3π2ηe)2/3. (1.63)

The volume of a spherical shell in k-space with radius k and thickness
dk is given by 4πk2dk. The number of states in this shell is given by:

dN = 2
4πk2dk

(2π/L)3
, (1.64)

where the factor 2 accounts for spin degeneracy. The energy of each
state on the spherical shell of radius k is !2k2/2me. The total energy of
electrons is obtained by integrating up to the maximum wavevector kF .



September 14, 2013 12:6 World Scientific Book - 9in x 6in B1652 ch01

34 Thermal Energy at the Nanoscale

E =
kF∫

0

(
!2k2

2me

) (
2

4πk2dk

(2π/L)3

)

=
!2L3

2meπ2

kF∫

0

k4dk

=
!2L3k5

F

10meπ2

=
3
5

(
k3

F L3

3π2

)

︸ ︷︷ ︸
N

(
!2k2

F

2me

)

︸ ︷︷ ︸
EF

=
3
5
NEF . (1.65)

Problem 1.4: Phonon bandgap in a diatomic chain

Consider the diatomic chain (discussed in Section 1.6) with atomic
masses m1 and m2. Assume that the spring constant is g for all the
bonds. At what point in the Brillouin zone is the bandgap (differ-
ence between the optical and acoustic branch frequencies) a minimum?
Obtain an expression for the non-dimensional bandgap (normalized by√

g/m1) as a function of the mass ratio m2/m1. Use the online Chap-
ter 1 CDF tool 2 to observe the changes in shape of the acoustic and
optical branches for varying mass ratio.

Solution

Observation of the acoustic and optical branches of a diatomic chain
reveals that the bandgap is minimum at the edge of the Brillouin zone.
The dispersion relation for a 1D diatomic chain of atoms is given by
(see Eq. (1.51)):

ω(K)2 = g

(
1

m1
+

1
m2

)
± g

√(
1

m1
+

1
m2

)2

− 4
m1m2

sin2

(
Ka

2

)
.

(1.66)

2See http://nanohub.org/groups/cdf tools thermal energy course/wiki

http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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The angular frequency at the edge of the Brillouin zone is obtained by
substituting K = π/a:

ω−

(
K =

π

a

)
=

√
2g

m2
, ω+

(
K =

π

a

)
=

√
2g

m1
. (1.67)

The non-dimensional bandgap is given by:

ω+

(
K = π

a

)
− ω−

(
K = π

a

)
√

g
m1

=
√

2
(

1 −
√

m1

m2

)
, (m2 > m1).

(1.68)
From the above expression, the bandgap increases with increasing mis-
match between the masses m1 and m2. Figure 1.21 shows snapshots of
the dispersion curves from the online Chapter 1 CDF tool. The opti-
cal branch flattens and the maximum frequency of the acoustic branch
reduces for increasing m2/m1.

Fig. 1.21 Dispersion curves of the diatomic chain for increasing m2/m1.

http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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Chapter 2

Carrier Statistics

2.1 Introduction

Before proceeding further into details of nanoscale structure and energy
transport, we first consider in this chapter an important distinction be-
tween nanoscience and nanotechnology. The former has been practiced for
a century, ever since the nature of atomic structure was uncovered by the
likes of Ernest Rutherford, Niels Böhr, and Marie Curie. The foundations of
nanotechnology were similarly laid by researchers in the physical sciences,
but nanotechnology is almost always characterized by a unique, collective
behavior of an ensemble of nanoscale objects. In other words, nanotechnol-
ogy encompasses phenomena that occur because of unique subcontinuum
effects and that also can be directed towards a useful technological purpose.

The discipline of statistical mechanics provides the tools to achieve de-
scriptions of large assemblies of nanoscale objects and is the primary subject
of this chapter. Once again, we provide here only the basic essentials, while
directing the motivated reader to more comprehensive coverage in topical
books by, for example, Chandler (1987) and Laurendeau (2005).

2.2 Statistical Ensembles

A collection of energetic particles can be characterized by its number of
particles N , volume V , and energy E. The collection can exist in a variety
of states in which the foregoing variables may change upon application of
a suitable perturbation. To analyze the diversity of states, we invoke the
fundamental premise of statistical mechanics (Chandler, 1987):

During a measurement (e.g., of temperature), every possible
state does in fact occur such that observed properties are aver-
ages of all possible states.

37
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The statistics of any ensemble can be described by defining its allowed
states, and each state can be represented by ν = (N, V, E). We define Ων as
the number of possible arrangements of the ensemble that can produce the
state ν within dE of energy E. The fundamental statistical assumption that
all states are equally probable then implies the probability that a particle
will be in a state ν is:

Pν =
1

Ων
. (2.1)

The number of states also provides insight into the randomness that is
possible in a given ensemble. Such disorder forms the essence of the ther-
modynamic property called entropy, which was derived by Boltzmann as:

S = kB ln (Ων). (2.2)

This result, when combined with the Maxwell relations (Laurendeau, 2005),
produces a statistical definition for temperature:

1
T

=
(
∂S

∂E

)

N,V

, (2.3)

or

β =
1

kBT
=

(
∂ ln Ων

∂E

)

N,V

, (2.4)

where the term β is a common thermodynamic expression for the inverse
of ‘thermal energy’ kBT .

Various permutations and restrictions can be applied to an ensemble
in order to change its state. Energy and particle number are the most
important such properties for our purposes. If these properties are allowed
to vary within an ensemble, then the probability of a state ν can be shown
to be Laurendeau (2005):

Pν =
exp(−βEν − µNν)

Ξ
, (2.5)

where

Ξ =
∑

ν

exp(−βEν − µNν), (2.6)

and where µ is the electrochemical potential; the latter equation defines the
ensemble’s partition function Ξ, which is essentially a normalizing factor
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to ensure that the total probability sums to unity. Further, the quantifi-
cation of ensemble statistics allows the calculation of averages through by
taking ‘moments’ of probability. For example, an average energy can be
calculated as:

〈E〉 =
∑

ν

PνEν . (2.7)

An ensemble in which both the energy and number of particles are
allowed to vary is termed the grand canonical ensemble. A given state will
have N1 particles each with energy E1, N2 particles with energy E2, and so
on. Their average energy and occupation numbers can be expressed using
Eqs. (2.5)–(2.7) as:

〈E〉 = −
(
∂ ln Ξ
∂β

)

µ,V

, (2.8)

〈N〉 = −
(
∂ ln Ξ
∂µ

)

β,V

. (2.9)

The statistics of the particles of interest here can be described in this
manner, noting that:

• Bose-Einstein statistics, which govern phonons and photons, allow
integer occupation numbers Ni = 0, 1, 2, 3, . . . .

• Fermi-Dirac statistics, which govern electrons, allow only binary
occupation numbers Ni = 0 or 1, as a result of the Pauli exclusion
principle (Ashcroft and Mermin, 1976).

• Both of the above statistics converge at very high particle ener-
gies (relative to the thermal energy kBT ) to classical Maxwell-
Boltzmann occupation statistics.

The resulting average occupation numbers 〈N〉, despite these differences,
can be expressed in a general form as:

fo
i =

1

e
Ei−µ
kBT + γ

γ = 1 (Fermi-Dirac, i = FD)
γ = −1 (Bose-Einstein, i = BE)
γ = 0 (Maxwell-Boltzmann, i = MB)

, (2.10)
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where the equilibrium ‘distribution function’ fo
i is synonymous with the

average occupation number and is used hereafter. The Maxwell-Boltzmann
distribution (γ = 0) represents the limit (Ei − µ) $ kBT for both Fermi-
Dirac and Bose-Einstein distributions.

The electrochemical potential depends on the enumeration of carriers.
It is zero for systems with an indefinite number of carriers (i.e., phonons
and photons) (see Patria, Statistical Mechanics, p 189). The Helmholtz
free energy can be expressed as A = µN − pV , and if N is unbounded,
the equilibrium number of particles N must be determined by minimizing
A with respect to N , which by definition requires (∂A/∂N)V = µ = 0.
For phonons and thermal photons (which are both called ‘bosons’ because
they follow Bose-Einstein statistics) µ is zero because these particles can
be created or destroyed at random without a change in the electrochemical
potential. For electrons in metals, which have a finite number of carriers,
µ can be approximated in terms of the Fermi energy EF and temperature
as (Ashcroft and Mermin, 1976):

µ ≈ EF

[
1 − π2

12

(
kBT

EF

)2
]
, (2.11)

where the Fermi energy represents the highest occupied energy at absolute
zero temperature and was expressed for a free-electron gas previously in
Eq. (1.40) (See also Eq. (5.20) of Zhang (2007)).

As an example, consider a distribution of phonons from which we choose
those with a particular frequency ων . While the energy of each of these
phonons has already been shown to be !ων, the actual number of such
phonons at a given temperature must be determined from statistics. In
accord with the energy of a given phonon mode derived in the previous
chapter (see Eq. (1.26)), the average (or expected) energy of all phonons at
this frequency is:

〈Eν〉 = !ων

{
fo

BE(ων , T ) +
1
2

}

= !ων

{[
exp

(
!ων

kBT

)
− 1

]−1

+
1
2

}
, (2.12)

where the 1/2 term accounts for zero-point energy (i.e., energy at zero
absolute temperature). Figure 2.1 shows the resulting variation of average
energy for phonons at frequencies of ων = 1013 and ων = 1014 rad/s. The
figure also contains a comparison with the classical energy kBT that arises



September 14, 2013 12:7 World Scientific Book - 9in x 6in B1652 ch02

Carrier Statistics 41

Fig. 2.1 Temperature-dependent energy of a classical harmonic oscillator and two quan-
tum harmonic oscillators at ω = 1013 rad/s and ω = 1014 rad/s. The zero-point energy
for quantum oscillators is on the y-axis.

from the equipartition theorem [Laurendeau (2005)]. In this case, half of
the ‘thermal energy’ kBT comes from the average kinetic energy in a single
direction (kBT/2), while the other half originates from the average potential
energy in the bonds.

Clearly, temperature is intimately related to energy in both classical
and quantum systems. For a simple (classical) harmonic oscillator, the
relationship is direct: 〈Etot〉 = kBT . For a quantum harmonic oscillator,
the temperature dependence is contained within the occupation number:
〈Etot〉 = !ω [fo

BE(ω, T ) + 1/2]. To complicate matters further, an atomic
lattice can support many harmonic oscillators (according to the dispersion
relation), and we need to sum (average) over all of their frequencies to find
temperature. The results of Fig. 2.1 suggest that phonons oscillating at
frequencies of ω = 1013 rad/s (and lower) can be approximated by classical
statistics for all except cryogenic temperatures (i.e., below liquid nitrogen
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temperature, 77 K), whereas phonons at ω = 1014 rad/s require quantum
statistics, even well above room temperature. The general guideline for
assessing whether a classical approximation is appropriate is to evaluate
χ = !ω

kBT . For example, at room temperature:

! × 1013 rad/s
kBT

= 0.25 (χ < 1, classical approximation is reasonable)

! × 1014 rad/s
kBT

= 2.5 (χ > 1, classical approximation is not reasonable).

2.3 Phonon Density of States

The need to quantify the number of states around a certain energy or
wavevector is common in the integral analysis of phonons. The associated
quantity is called the density of states and describes the number of allowable
phonon states per unit ‘volume’ (i.e., length in 1D, area in 2D, true volume
in 3D) per unit energy or wavevector, depending on context. Recalling
the restriction on allowable wavevectors from the looped 1D chain example
(see Eq. (1.19)), we notice that allowable wavevectors are separated by a k-
space increment of 2π/L, where L = aN (N is the number of primitive unit
cells; for cells with a single atom per unit cell N is therefore the number
atoms). We find a similar result for 2D and 3D lattices for which each
allowable wavevector occupies a k-space ‘volume’ of (2π/L)d, where d is
dimensionality.

The number of states is calculated by forming the ratio of a smooth (i.e.,
circular in 2D, spherical in 3D) k-space ‘volume’ to that of an individual
state, as shown in Fig. 2.2. One subtlety of the foregoing development
is that K can take both positive and negative values, and therefore with
K defined as the absolute magnitude of K (i.e., K = |K|), one allowable
wavevector exists for each increment of π/L in the 1D k-space (which, by
definition, is strictly positive) as a special case. Therefore, the number of
allowed phonon states from 0 to K (which, recall, is the absolute magnitude
of K) for 1-, 2-, and 3-dimensional systems is:

N1D =
2K

2π/L
, (2.13)
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N2D =
πK2

4π2/L2
, (2.14)

N3D =
4πK3/3
8π3/L3

. (2.15)

Once this number of allowed modes or phonons is known, the density of
such states (per unit wavevector and real-space ‘volume’) can be expressed
as:

D1D(K) =
1
L

dN1D

dK
=

1
π

, (2.16)

D2D(K) =
1
L2

dN2D

dK
=

K

2π
, (2.17)

D3D(K) =
1
L3

dN3D

dK
=

K2

2π2
. (2.18)

The density of states is often described with respect to phonon fre-
quency instead of wavevector. This transformation is made quite readily
using the chain rule and the definition of phonon group velocity (vg(ω) =
dω/dK):

D1D(ω) =
1
L

dN1D

dω
=

1
L

dN1D

dK

dK

dω
=

1
vg(ω)π

, (2.19)

D2D(ω) =
1
L2

dN2D

dω
=

1
L2

dN2D

dK

dK

dω
=

K(ω)
2πvg(ω)

, (2.20)

D3D(ω) =
1
L3

dN3D

dω
=

1
L3

dN3D

dK

dK

dω
=

K(ω)2

2π2vg(ω)
, (2.21)

where, as we have shown previously (see Eq. (1.22)), the phonon group
velocity generally depends on frequency (and thus the wavevector through
the dispersion relation).

At this point in the development, the K(ω) relations above are often
simplified for phonon transport through the Debye approximation, which
assumes linear dispersion ω = vg,aveK and places an upper bound ωD on
frequency in order to match the total number of possible phonon states.
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(a)

(b)

Fig. 2.2 k-space in 2D and 3D. Minimum separation between allowable wavevectors is
2π
L . k-space spherical ‘volume’ (circular area for 2D) is depicted in the figure.

The resulting density of states for a bulk material becomes:

D3D,Debye(ω) =
ω2

2π2v3
g,ave

, for ω < ωD = vg,ave(6π2ηa)1/3, (2.22)

where vg,ave is an appropriately averaged phonon velocity among the acous-
tic polarizations and ηa is the number of unit cells per unit volume of real
space. For now, we will refrain from making this approximation.
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2.4 Electron Density of States

Electron states are similarly restricted, as shown in Section 1.5 for the
particle-in-box problem. The result, Eq. (1.37), in combination with the
parabolic dispersion of Eq. (1.34) provides us with analogues to the forego-
ing analysis of phonons.

The electron density of states is almost always expressed per unit energy
E as D(E) (this convention allows us to distinguish it from the phonon
density of states, which is usually described in terms of frequency ω, cf.
Eq. (2.21)). Given the quantum relation E = !ω between energy and
frequency, the density of states per unit energy is closely related to that
given above for phonon density of states per unit frequency. Accordingly,
the electronic density of states can be expressed as D(E) = 2D(ω)/!, where
the factor of 2 accounts for spin degeneracy. The resulting expressions in
each dimensionality follow:

D1D(E) =
2me

π!2k(E)
, (2.23)

D2D(E) =
me

π!2
, (2.24)

D3D(E) =
mek(E)
π2!2

, (2.25)

where me is the electron rest mass, and we have made use of the momentum
relation mevg = !k.

The same result can be derived by integrating over k-space using Dirac
delta functions for allowable states (Lundstrom, 2009):

D(E) =
1
Ld

∑

k′

δ [E(k) − E(k′)],

=
2

(2π)d

∫

k′
δ

(
!2k2

2me
− !2k′2

2me

)
d
−→
k′

=
2me

π!
√

2meE
(1D)

=
m

π!2
(2D)

=
me

√
2meE

π2!3
(3D), (2.26)
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where in this set of equations we have made the parabolic band approxi-
mation for k(E), namely:

E =
!2k2

2me
or k(E) =

√
2meE

! . (2.27)

Figure 2.3 shows a parabolic electron band with two ranges of k-space.
The allowed states are equally distributed in k-space, but corresponding
mapping of energies from allowed k-states shows a higher density of states
at low energies (and low wavevectors), where the band is flattest.

A schematic of the resulting electron density of states appears in Fig. 2.4.
The curves for confined structures (quantum wells, wires, and dots) contain
multiple ‘bands’ that build upon each other and generally follow the overall√

E trend of the curve for a bulk conductor.
For greater depth, the reader is referred to the nanoHUB’s ‘CNTbands’

tool (Seol et al., 2011a), which calculates the geometry, band structure,
and density of states of single-walled carbon nanotubes. As an example,
Fig. 2.5 shows results for a (12, 12) CNT.

Fig. 2.3 Parabolic electron energy band (with normalized band edge at Ec,norm = 0.5)
and corresponding allowable k-states at low and high wavevectors.
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Fig. 2.4 Electron density of states for 0D (quantum dot), 1D (quantum wire), 2D
(quantum well), and 3D (bulk) materials. Bulk material density of states follows a

√
E

dependence, whereas confined material densities of states present discontinuities due to
multiple band-folding from confined dimensions.

2.5 Example: Derivation of Planck’s Law

This section provides a brief derivation of Planck’s law of blackbody ra-
diation from basic statistical principles, as an example of a ‘boson’ ther-
mal field. For more information, the reader is referred to the textbook by
Rybicki and Lightman (2008). The reader might also find interest in the
historical development of early research in radiation physics as surveyed by
Barr (1960).

2.5.1 Photon Gas in a Box

First, consider a cubic box with each side of length L filled with electro-
magnetic (EM) radiation (a so-called ‘photon gas’) that forms standing
waves whose allowable wavelengths are restricted by the size of the box.
We will assume that the waves do not interact and therefore can be sepa-
rated into the three orthogonal Cartesian directions such that the allowable
wavelengths are:

λi =
2L

ni
, (2.28)
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Fig. 2.5 Geometry and density of states of a (12,12) single-walled carbon nanotube
(SWCNT). Refer to https://nanohub.org/resources/cntbands-ext for the online tool.

where ni is an integer greater than zero, and i represents one of the three
Cartesian directions–x, y, or z.

From quantum mechanics, the energy of a given mode (i.e., an allowable
set nx, ny, nz) can be expressed as:

E(N) =
(

N +
1
2

)
hc

2L

√
n2

x + n2
y + n2

z, (2.29)

where h is Planck’s constant (6.626× 10−34J s). The number N represents
the number of such modes, or photons, with the set of quantum numbers
{nx, ny, nz}. Importantly, unlike electrons, an unlimited number of modes,
or photons, of a given energy can exist; thus, photons are governed by
Bose-Einstein statistics, for which the average 〈N〉 = fo

BE according to
Eq. (2.9).

2.5.2 Statistical Mechanics of the Photon Gas

To derive the energy density in this photon gas, we first need to know the
relative probability with which a given energy state E(N) is occupied at
a given temperature. Here, we turn to statistical mechanics, which reveals
this probability as:

PN =
exp(−βE(N))

Z(β)
, (2.30)
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where β is the inverse of thermal energy, or β = (kBT )−1, and Z(β) is the
partition function that normalizes the probability as:

Z(β) =
∞∑

N=0

exp(−βE(N)) =
1

1 − exp(−βε) , (2.31)

where ε = hc
2L

√
n2

x + n2
y + n2

z = hc
λ is the energy of a single photon, and the

latter equality derives from the relationship between the wavelength λ and
the ni indices of the EM waves in the box. This wavelength is related to
the speed of light c and frequency ν through the familiar relation

c

λ
= ν ⇒ ε = hν. (2.32)

Again from statistical mechanics (and specifically Bose-Einstein statis-
tics), the average energy within a given mode can be expressed as

〈E(N)〉 = −d ln Z

dβ
=

ε

exp(βε) − 1
, (2.33)

where the zero point energy is neglected.

2.5.3 Energy Density of the Photon Gas

Now that we have an expression for the average energy of a given mode,
we can sum (integrate) over all modes to find the total specific energy
within the photon gas. This energy can be expressed as an integral over all
energies:

u =
∫ ∞

0
〈E〉D(ε)dε

=
∫ ∞

0

ε

exp(βε) − 1
D(ε)dε, (2.34)

where D(ε) is the density of states that gives the number of allowed modes
per unit volume and per unit energy within an interval between ε and
ε+ dε. This function can be derived from the allowable wavelengths and n
indices as:

D(ε)dε =
8π

h3c3
ε2dε. (2.35)
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The total energy per unit volume (or ‘specific’ energy) can now be ex-
pressed as

u =
∫ ∞

0

8π
h3c3

ε3

exp(βε) − 1
dε, (2.36)

where the integrand is the spectral energy density u′. This function can
be expressed in terms of an energy, wavelength, or frequency spectral basis
through the relation ε = hc/λ such that different forms of u′ are commonly
used. However, they are each integrands in expressions that are used to
calculate the overall energy density as:

U

L3
= u(T ) =

∫ ∞

0
u′(ε, T )dε =

∫ ∞

0
u′(λ, T )dλ =

∫ ∞

0
u′(ν, T )dν. (2.37)

The corresponding expressions for spectral energy density follow:

u′(ε, T ) =
8π

h3c3

ε3

exp
(

ε
kBT

)
− 1

, (2.38)

u′(λ, T ) =
8πhc

λ5

1

exp
(

hc
λkBT

)
− 1

, (2.39)

u′(ν, T ) =
8πhν3

c3

1

exp
(

hν
kBT

)
− 1

, (2.40)

u′(ω, T ) =
(!ω)3

π2!2c3

1

exp
(

!ω
kBT

)
− 1

. (2.41)

2.5.4 Blackbody Emission Intensity

Now assume that a small hole is cut into the box as shown in Fig. 2.6. All
radiation emanating from this hole will be moving at the speed of light c.
Also, the radiation will be uniformly distributed throughout the hemisphere
of solid angles (2π steradians), and one half of the energy will be oriented
such that it can move outward through the hole.

The spectral radiation intensity is defined as the rate of energy emitted
per unit area per unit solid angle and per unit wavelength. The rate of
energy emitted per area is simply the product of the energy density derived
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Fig. 2.6 Blackbody emission from a small hole in a box.

above and the speed of light (i.e., the distance swept by a ray per unit of
time). Therefore, the spectral intensity becomes:

I(λ, T ) =
1
2

[
u′(λ, T )c

2π

]
=

2hc2

λ5

1

exp
(

hc
λkBT

)
− 1

. (2.42)

Similarly, the spectral intensity (per unit frequency ν instead of wave-
length) is:

I(ν, T ) =
1
2

[
u′(ν, T )c

2π

]
=

2hν3

c2

1

exp
(

hν
kBT

)
− 1

. (2.43)

And finally, the intensity per unit angular frequency ω = 2πν is:

I(ω, T ) =
1
2

[
u′(ω, T )c

2π

]
=

!ω3

4π3c2

1

exp
(

!ω
kBT

)
− 1

. (2.44)

This distribution is plotted for different temperatures in Fig. 2.7.
The foregoing analysis of electromagnetic transport with photons high-

lights the convergence of statistical distributions and energy states. The
results emphasize particularly well the spectral behavior of transport and its
interrelationship with temperature. Subsequent chapters will demonstrate
similar concepts for phonons and electrons.
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(a)

(b)

Fig. 2.7 Spectral intensity (per unit angular frequency ω) as a function of angular fre-
quency at different temperatures. The frequency at maximum spectral intensity increases
with increasing temperature, according to Wien’s displacement law (Modest, 2003).
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Example Problems

Problem 2.1: Getting a feel for the numbers (note: this
problem has been adapted from Kaviany (2008))

(a) The maximum energies of acoustic and optical phonons in graphene
are 0.16 eV and 0.21 eV respectively. Determine fo

BE at T = 300
and 3000 K, for these two energies.

(b) The Fermi energy of aluminum is 11.7 eV. Assuming that the chem-
ical potential is equal to the Fermi energy, determine fo

FD for E =
1, 11.5 and 20 eV. Calculate the occupation numbers at T = 1 and
3000 K.

(c) The average thermal speed of monoatomic gas molecules is given
by

√
8kBT/(πm). Determine the average speed, kinetic energy

and the Maxwell-Boltzmann energy distribution function fo
MB (at

the average energy) for argon gas at T = 300 K.
(d) The surface temperature of the sun can be approximated to be

about 5700 K. Determine fo
BE for photons emitted from the sun

at λ = 100 nm (UV), λ = 600 nm (visible) and λ = 900 nm (IR).

Solution

(a) The Bose-Einstein distribution is given by:

fo
BE =

1
exp(E/kBT ) − 1

. (2.45)

At T = 300 K, kBT = 0.026 eV. Thus, fo
BE = 0.002 for E = 0.16

eV and fo
BE = 0.0003 for E = 0.21 eV. At T = 3000 K, kBT =

0.258 eV. Thus, fo
BE = 1.164 for E = 0.16 eV and fo

BE = 0.796
for E = 0.21 eV. The occupation numbers increase with increasing
temperature (see Fig. 2.8a). Also note that fo

BE can be greater
than 1 because the Pauli exclusion principle does not apply for
bosons.

(b) The Fermi-Dirac distribution is given by:

fo
FD =

1
exp((E − µ)/kBT ) + 1

. (2.46)

At T = 1 K, kBT = 8.63 × 10−5 eV. Thus fo
FD = 1 for E = 1 eV,

fo
FD = 1 for E = 11.5 eV and fo

FD = 0 for E = 20 eV.
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At T = 3000 K, kBT = 0.258 eV. Thus fo
FD = 1 for E = 1 eV,

fo
FD = 0.68 for E = 11.5 eV and fo

FD = 0 for E = 20 eV. The
Fermi-Dirac distribution changes from 1 to 0 in a small energy
window (of the order of kBT ) around the electrochemical potential
(see Fig. 2.8b).

(c) From the given expression, the average thermal speed of argon
atoms (m = 40 amu. = 6.64 × 10−26 kg) at T = 300 K is 398.8
m/s. Thus the average kinetic energy is:

E =
1
2
mArv

2 = 0.033 eV. (2.47)

The Maxwell-Boltzmann distribution is given by fo
MB =

exp(−E/kBT ) = 0.28.
(d) For a given wavelength λ, the energy of a photon is E = hc/λ.

Thus E = 12.42 eV for λ = 100 nm, E = 2.07 eV for λ = 600 nm
and E = 1.38 eV for λ = 900 nm. Also kBT = 0.49 eV at T = 5700
K. Thus fo

BE = 9.82 × 10−12 for λ = 100 nm, fo
BE = 0.0148 for

λ = 600 nm and fo
BE = 0.063 for λ = 900 nm.

Problem 2.2: Working with the Bose-Einstein distribu-
tion function

(a) The energy levels of a quantum harmonic oscillator are given by:

En =
(

n +
1
2

)
!ω,

where n = 0, 1, 2 . . .. Obtain an expression for the partition func-
tion Ξ (you will need to sum an infinite geometric series) defined
by (µ = 0 for phonons):

Ξ =
∑

n

exp(−βEn).

(b) Obtain an expression for the average energy 〈E〉 defined by:

〈E〉 = −∂ ln Ξ
∂β

.

Show that the average energy of the mode with frequency ω can
be written as !ω

(
fo

BE + 1
2

)
, where fo

BE denotes the Bose-Einstein
distribution function.
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Solution

(a) The partition function Ξ is given by:

Ξ =
∑

n

exp (−βEn)

=
n=∞∑

n=0

exp (−β (n + 1/2)!ω)

=
exp(−β!ω/2)

1 − exp(−β!ω)
. (2.48)

(b) The average energy 〈E〉 is given by:

〈E〉 = −∂lnΞ
∂β

= − ∂

∂β

(
−β!ω

2
− ln(1 − exp(−β!ω))

)

=
!ω
2

+
!ω exp(−β!ω)
1 − exp(−β!ω)

= !ω
(

1
exp(β!ω) − 1

+
1
2

)

= !ω
(

fo
BE +

1
2

)
. (2.49)

Problem 2.3: Phonon DOS in graphene

The dispersion relation for graphene (excluding optical branches),
which is a two-dimensional material, is shown in Fig. 2.9. Graphene
has three acoustic branches commonly known as the LA, TA and ZA
modes. The LA and TA modes can be approximated by a linear dis-
persion relation while the ZA mode, which represents out-of-plane vi-
brations, is more closely represented by a quadratic dispersion relation
near the Brillouin zone center (see Appendix). Obtain an expression
for the phonon density of states D(ω) at three different frequencies ω1,
ω2, and ω3 as indicated in Fig. 2.9.
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Solution

The DOS for the LA mode is given by:

DLA(ω) =
1
L2

dN

dK

dK

dω

=
1

vg1L2

L2K

2π

(
N =

πK2

(2π/L)2
,

dω

dK
= vg1

)

=
ω

2πv2
g1

. (2.50)

Similarly, the DOS for the linear TA mode is given by:

DTA(ω) =
ω

2πv2
g2

. (2.51)

The DOS for the quadratic ZA mode is given by:

DZA(ω) =
1
L2

dN

dK

dK

dω

=
1

2cKL2

L2K

2π

(
N =

πK2

(2π/L)2
,

dω

dK
= 2cK

)

=
1

4πc
. (2.52)

All three modes are present at ω1. Thus,

Dtot(ω1) = DLA(ω1) + DTA(ω1) + DZA(ω1)

=
ω1

2πv2
g1

+
ω1

2πv2
g2

+
1

4πc
. (2.53)

Only the LA and TA modes are active at ω2:

Dtot(ω2) = DLA(ω2) + DTA(ω2)

=
ω2

2πv2
g1

+
ω2

2πv2
g2

. (2.54)

Only the LA mode is active at ω3:

Dtot(ω3) = DLA(ω3)

=
ω3

2πv2
g1

. (2.55)
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Problem 2.4: Phonon frequency at maximum intensity

Wien’s displacement law for electromagnetic radiation relates the pho-
ton wavelength at which the energy distribution is maximum to the
temperature. In this problem we derive a similar relation for phonons,
except in frequency space. Assume a 3D material with a single phonon
branch having a constant group velocity vg (Debye approximation).

• Show that the dominant phonon frequency (frequency at which
the spectral energy distribution is maximum) ωmax as a func-
tion of temperature T is given by !ωmax = CkBT where C is
a constant of proportionality. Neglect the zero-point energy in
your analysis.

• Use the online Chapter 2 CDF tool1 to observe the spectral
phonon energy distribution as a function of temperature.

• Verify the relation you obtained for the maximum phonon fre-
quency by tabulating the maximum points in the curve for a
few different temperatures. Also obtain the constant C.

2.5.4.1 Solution

Under the Debye approximation, the density of states D(ω) is given
by:

D(ω) =
ω2

2π2v3
g
. (2.56)

The spectral energy density u(ω, T ) is then given by:

u(ω, T ) = !ω︸︷︷︸
energy

ω2

2π2v3
g︸ ︷︷ ︸

DOS

1
exp(!ω/kBT ) − 1︸ ︷︷ ︸

occupation

=
!

2π2v3
g

ω3

exp(!ω/kBT ) − 1
. (2.57)

At a given temperature, spectral energy density is a maximum when
∂u
∂ω = 0. Thus,

3ω2(exp(!ω/kBT ) − 1) − ω3 exp(!ω/kBT )
!

kBT
= 0. (2.58)

1See http://nanohub.org/groups/cdf tools thermal energy course/wiki

http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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Defining x∗ = !ω/kBT , we arrive at the following implicit equation
for x∗.

3(1 − exp(−x∗)) = x∗. (2.59)

• The above equation can be solved numerically (using
WolframAlpha 2 for example) to obtain x∗ = 2.82. Thus
!ωmax = 2.82 kBT . The frequency at which the spectral energy
distribution is a maximum increases linearly with temperature.
In other words, the peak wavelength is inversely proportional
to temperature.

• Figure 2.10 shows snapshots from the online Chapter 2
CDF tool where the spectral energy distribution is plotted for
three different temperatures. The peak of the curves moves to
the right for increasing temperature.

• Use the online tool to tabulate ωmax for a few different tem-
peratures and confirm the linear relationship between ωmax

and T .

2See http://www.wolframalpha.com/input/?1=solve+3(1-exp(-x))+%3D+x

http://www.wolframalpha.com/input/?i=solve+3(1-exp(-x)))+%3D+x
http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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Fig. 2.8 (a) Bose-Einstein distribution function. (b) Fermi-Dirac distribution function.
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Fig. 2.9 Graphene dispersion relation.

Fig. 2.10 Spectral energy distribution for three different temperatures.
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Chapter 3

Basic Thermal Properties

3.1 Introduction

The energy density analysis discussed in Section 2.5.3 provided important
insights about the inter-relationship between carrier energy and carrier
statistics for photons. A similar analysis for phonons and electrons (and
their respective energy levels and statistics) will provide the basis for the
property known as internal energy. This property should be familiar to
those who have studied classical or statistical thermodynamics, as should
the related quantity called specific heat. For a given collection of carriers,
knowledge of its internal energy and dependence on temperature (which
derives from its statistics) allows explicit calculation of volumetric specific
heat as:

cv =
∂u(T )
∂T

, (3.1)

where the normalizing quantity (i.e., the ‘amount’ of the ensemble by which
u(T ) is normalized) can be either volume or mass. In Eq. (2.37) from the
previous chapter, volume is the normalizing quantity for u(T ).

The specific heat quantifies the ability of a set of energy carriers to
store thermal energy relative to the temperature rise required to store this
energy. At the same time, these carriers can move within a material or con-
trol volume and while doing so transport thermal energy. Consequently, the
average speed with which the carriers move combined with the amount of
energy that they carry provides the foundation of the important thermal
transport property known as thermal conductivity. We develop these con-
cepts in the present chapter for the carriers of most interest here—phonons
and electrons.

61



September 14, 2013 12:8 World Scientific Book - 9in x 6in B1652 ch03

62 Thermal Energy at the Nanoscale

3.2 Specific Heat

The most general expression for the extensive (i.e., not specific, or intensive)
internal energy U is:

U =
∑

k

∑

p

Ei,p(k)fo
i [Ei,p(k), T ], (3.2)

where we have neglected zero-point energy. The foregoing equation is the
summation form of the integral expression (Eq. (2.34)) used in the deriva-
tion of Planck’s law for photons, in which the concept of density of states
was employed somewhat obsequiously to convert sums to integrals. This
duality between summative and integral forms of quantities will persist
throughout subsequent analysis both because of various preferences that
have evolved in different communities of theorists and because sometimes
the summative form is more analytically convenient than the integral form
and vice versa, depending on context. Here, we seek first to relieve some of
the common confusion associated with the dual forms.

We first recognize that k-space summation is often cumbersome. A
general conversion from summation to integration of a function F in k-
space is:

lim
L→∞

1
Ld

∑

k

F (k) =
∫

F (k)
dk

(2π)d
, (3.3)

where F (k) is a generic function in a k-space of dimension d (which matches
the real-space dimension of a given problem). This conversion derives from
the fact that each allowable states k-space volume is (2π/L)d. Applied to
Eq. (3.2), the internal energy can be expressed in integral form as:

u =
U

Ld
=

∑

p

∫
Ei,p(k)fo

i [Ei,p(k), T ]
(2π)d

dk. (3.4)

And then using Eq. (3.1), specific heat can be expressed as:

cv =
∂u

∂T
=

∑

p

∫
Ei,p(k)
(2π)d

∂fo
i

∂T
dk, (3.5)

where

∂fo
i

∂T
= (fo

i )2e(Ei−µ)/kBT

(
Ei − µ

kBT 2

)
. (3.6)
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For many (most, really) problems, the d-dimensional k-space integral
remains cumbersome, and therefore, the concept of density of states is
used to convert the multi-dimensional integral to a single dimension (either
energy or frequency). We apply this process to different carrier types in
the following subsections.

3.2.1 Acoustic Phonon Specific Heat

The k-space integral in Eq. (3.5) explicitly calls for knowledge of the
energy-wavevector relation (Ei,p(k)). For phonons, this relation is typ-
ically expressed in terms of frequency and wavevector through the dis-
persion relation. In Chapter 1, we derived the dispersion relation for
an acoustic phonon branch in the idealized one-dimensional atomic chain
(Eq. (1.22)). In higher dimensions, an atom can move in more than one
direction, as shown in Fig. 3.1. These extra dimensions create additional
phonon ‘branches’ whose dispersion is generally similar to the longitudinal
branch (see Fig. 1.13), except that the effective spring constant g differs,
resulting in a different maximum phonon frequency at the edge of the Bril-
louin zone. Further, three-dimensional crystals with appropriate lattice
symmetry relative to the propagation direction of interest can exhibit de-
generacy such that the two transverse branches have identical dispersion
relations.

The curvature of the acoustic phonon dispersion relation and associated
factors that cause real materials to deviate from the ideal sine function of
Eq. (1.22) has motivated the use of a simplified dispersion model. The most
prominent among these is the Debye approximation (Debye, 1912), which
approximates the sine function as a line through the ω-K origin:

ω(K) ≈ vg,aveK. (3.7)

This approximation, however, cannot be applied blindly because doing so
would fail to account for the finite number of allowable phonon states as
discussed in Section 2.3. The Debye frequency represents the maximum
allowable frequency such that the number of states (N) in a given branch
matches the number of allowed wavevectors.

To determine the number of independent wavevectors in a Brillouin
zone, the following statement from Ziman (1972, p. 25) is crucial:

[T]here are exactly as many allowed wave-vectors in a Brillouin
zone as there are unit cells in a block of crystal.
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Fig. 3.1 Longitudinal and transverse phonon branches. Atoms vibrate along the wave
propagation direction in the longitudinal mode. In the transverse mode, atoms vibrate
perpendicular to the wave propagation direction.

The number of allowed states in each dimensionality as a function of the
magnitude of the wavevector K was given previously (Eq. (2.13)–(2.15)).
Setting the number of states to equal the number of unit cells in the crystal,
the Debye wavevectors are:

KD,1D = πηa, (3.8)

KD,2D = (4πηa)1/2, (3.9)

KD,3D = (6π2ηa)1/3, (3.10)
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where ηa is the number of unit cells per unit ‘volume’ of the given
dimensionality (i.e., length for 1D, area for 2D, and true volume for 3D).
Substituting the Debye dispersion relation gives the Debye frequency:

ωD,1D = vg,aveπηa, (3.11)

ωD,2D = vg,ave(4πηa)1/2, (3.12)

ωD,3D = vg,ave(6π2ηa)1/3. (3.13)

A common tabulated representation of the Debye frequency for bulk
(3D) materials is the Debye temperature:

θD =
!ωD,3D

kB
=

!vg,ave

(
6π2ηa

)1/3

kB
. (3.14)

One subtle point of clarification is important here, because the foregoing
Debye quantities are often expressed in terms of the atomic density instead
of the unit cell density. The former is substantially easier to calculate
because it can be derived easily from knowledge of a crystal’s mass density
and constituent atomic mass(es). Of course, the two are equivalent for
crystals with one atom per unit cell (i.e., with no basis atoms). In contrast,
as described in Section 1.6 the presence of basis atoms produces entirely new
phonon branches (cf., the optical branch in the 1D diatomic chain example).
If our intention is to approximate both acoustic and optical branches with
the linear-dispersion Debye approximation, then we would replace the unit
cell density ηa in the foregoing equations with n × ηa, where n represents
the number of atoms per unit cell.

This approximation may be reasonable with the understanding that the
Debye wavevector will extend substantially beyond the edge of the Brillouin
zone boundary, as shown in Fig. 3.2, to include the extension of the optical
branch into the ‘second’ Brillouin zone. However, as we will see in the
subsequent section, an entirely different model for specific heat is often
most appropriate for optical phonons, in which case the unit cell density
alone should be used in calculating Debye metrics. For readers seeking
further details, Ashcroft and Mermin (1976, pp. 462–463) clarify this issue
particularly well.

The general results for phonon density of states in frequency space
(Eqs. (2.19)–(2.21)) become, under the Debye approximation:

DD,1D(ω) =
1

vg,aveπ
, (3.15)
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Fig. 3.2 Debye’s linear approximation to the phonon dispersion. The Debye cutoff
wavevector, KD, is chosen such that it contains allowed wavevectors equalling the number
of ions in the crystal. Debye quantities such as the Debye cutoff wavevector, KD, and
the associated Debye cutoff frequency, ωD , are depicted.

DD,2D(ω) =
ω

2πv2
g,ave

, (3.16)

DD,3D(ω) =
ω2

2π2v3
g,ave

, (3.17)

where these results are applicable for ω < ωD. For most of the foregoing
Debye quantities, the average group velocity plays an important role. Often,
the long-wavelength velocity

[
∂ω
∂K

]
K=0

is used. This approximation is most
suitable for low-temperature conditions in which the phonon population is
dominated by low frequencies. However, even in such cases, the single value
of vg,ave implies k-space symmetry in the applicable directions. Further,
in some prior work, a single group velocity is defined as an amalgam of
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the transverse and longitudinal branches. Instead of enumerating all of the
possible representations for group velocity here, the reader is cautioned to
scrutinize the definition of group velocity for any work that employs the
Debye approximation.

Given the foregoing assumptions (and particularly re-emphasizing the
k-space symmetry), we can calculate the canonical Debye specific heat
for acoustic phonons in 3D (bulk) materials from the general expression
(Eq. (3.5)):

cv,D,3D =
∑

p

∫
Ei,p(K)
(2π)d

∂fo
i

∂T
dk

3D=
∑

p

∫ !vg,aveK

(2π)3
∂fo

i

∂T
dk

=
∑

p

∫ KD

0

!vg,aveK

(2π)3
∂fo

BE

∂T
4πK2dK

=
∑

p

∫ ωD

0
!ω∂fo

BE

∂T
DD,3D(ω)dω

=
∑

p

∫ ωD

0

!ω3

2π2v3
g,ave

∂fo
BE

∂T
dω

= 9ηakB

(
T

θD

)3 ∫ θD/T

0

x4exdx

(ex − 1)2
, (3.18)

where x ≡ !ω
kBT , and the last equality derives from (a) the definition of the

temperature derivative of the distribution function (Eq. (3.6)), (b) the defi-
nition of group velocity in terms of unit cell density and Debye temperature
(Eq. (3.14)) and (c) the assumption that the three acoustic phonon branches
can be combined through a single Debye group velocity (thus eliminating
the branch summation by multiplying the integral by a factor of 3). This
latter approximation should be taken with caution; again, the definition of
the group velocity must be appropriate to the assumptions invoked.

The final Debye specific heat expression in Eq. (3.18) is a much-
celebrated result, despite the fact that the integral is not generally reducible
to an analytic expression. Often, the extreme temperature limits can be
used to determine limiting expressions for low and high temperatures rela-
tive to the Debye temperature. For the low-temperature limit:

cv,D,3Dlow ≈ 234ηakB

(
T

θD

)3

(T % θD). (3.19)
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This result indicates that, at low temperatures, the acoustic phonon specific
heat increases as T 3 for a 3D material, and we will find below that the factor
of 3 derives from the dimensionality of the material (e.g., the temperature
dependence for 2D materials is T 2). Conversely, for very high temperatures
(relative to θD), the result becomes independent of temperature:

cv,D,3Dhigh ≈ 3ηakB (T & θD). (3.20)
The temperature-independence of the latter result is caused by the capping
of energy states imposed by the maximum phonon energy associated with
θD. In effect, any increases in temperature must be accommodated by
increasing the phonon populations of states that are already well occupied
at or below θD, as opposed to the situation at very low temperatures for
which empty states can be filled when temperature increases. The high-
temperature result is called the “Law of Dulong and Petit” (Ashcroft and
Mermin, 1976).

3.2.2 Optical Phonon Specific Heat

Clearly, the Debye specific heat model is well suited for phonon branches
that exhibit a linear-like behavior through the origin of the dispersion curve
(e.g., acoustic branches with shapes like quarter sine waves). However, this
model is dubious for optical phonons, which exhibit relatively flat dispersion
curves that intercept the frequency (energy) axis at non-zero values (see
Fig. 1.18). Einstein (1906) proposed a general model for phonon specific
heat that assumes such flat dispersion behavior by assigning a single phonon
frequency to each branch. While the intention was to apply this model for
all branches, later developments, such as the Debye model (Debye, 1912)
described above, revealed clearly that this model is best applied to optical
phonon branches only.

The derivation of the Einstein model for specific heat generally follows
that of Section 3.2.1. It differs in the assumption that all phonons in the
branch of interest oscillate at a single frequency ωE , leading to the definition
of the Einstein temperature θE :

θE =
!ωE

kB
. (3.21)

For convenience, we retain the summation form throughout the deriva-
tion. Using this dispersion relation (i.e., ω = constant = ωE) in the general
integral expression for internal energy U (Eq. (3.2)) results in:

U =
∑

k

∑

p

!ωEfo
BE (ωE , T ). (3.22)
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Because the frequency does not depend on wavevector in the Einstein ap-
proximation, the entire argument can be brought out of the summation.
Then after differentiating with respect to temperature and dividing by vol-
ume (i.e., Ld), the Einstein specific heat becomes:

cv,E =
!ωE

Ld

∂fo
BE (ωE , T )
∂T

∑

k

∑

p

1

=
∑

p

ηa!ωE(fo
BE)2e(!ωE)/kBT

(
!ωE

kBT 2

)

=
∑

p

ηakB
χ2

EeχE

(eχE − 1)2
, (3.23)

where ηa is the number of allowable states (i.e., unit cells) per unit real
‘volume’, and χE = (!ωE)/(kBT ) = θE/T .

For many problems, the Einstein temperature will be much higher than
the real temperature, such that the optical phonon states are sparsely occu-
pied, or χE & 1. In this limit, Eq. (3.23) gives cv,E ≈ 0. In such cases, the
Debye analysis for only the acoustic branches suffices to characterize the to-
tal phonon specific heat. Conversely, for very high temperatures (χE % 1),
we find from lim

χE→0

χ2
EeχE

(eχE −1)2
= 1 that:

cv,E =
∑

p

ηakB (T & θE). (3.24)

Thus, in spite of the differences with the Debye model, the Einstein result
reduces to the Debye model’s high-temperature limit (i.e., the Law of Du-
long and Petit, see Eq. (3.20)), assuming three phonon branches (i.e.,
p = 3).

A comparison of the Debye and Einstein models is shown in Fig. 3.3,
in which both the low-temperature differences and high-temperature con-
vergence are clearly apparent. However, we emphasize that the high-
temperature limit for the Einstein model typically requires unusually high
temperatures because optical phonon frequencies of most materials corre-
spond to much higher energies than the equivalent thermal energy, i.e.,
ωE & kBT/!. However, each of these models can be accurate for all tem-
peratures in the correct context. The important point to remember is that
the Debye model is appropriate for acoustic phonons, while the Einstein
model (particularly Eq. (3.23)) should be used for optical phonons.
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Fig. 3.3 Comparison of specific heat dependence on temperature, as predicted by the
Debye and the Einstein model. The specific heats, derived from both the models, con-
verge at low and high temperatures.

3.2.3 Electron Specific Heat

The analysis of specific heat for electrons begins with a subtle modification
of the internal energy expression of Eq. (3.2):

Ue = 2
∑

k

∑

p

Ei,p(k)fo
FD [Ei,p(k), T ], (3.25)

where the pre-factor ‘2’ accounts for spin degeneracy, and the summation
over p relates to electronic bands instead of phonon branches. Once again,
mathematical convenience dictates the replacement of the k-space summa-
tion with an integral by invoking the electron density of states (Eq. (2.22))
and expressing the energy on a volumetric basis:

ue =
∫ ∞

0
Efo

FD(E, T )D(E)dE, (3.26)

where the factor ‘2’ has now been absorbed into the density of states (cf.,
Eq. (2.22)).
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Another subtlety of the analysis for electrons derives from the Pauli ex-
clusion principle, which dictates that some energy states must be occupied
even at absolute zero temperature. The highest such occupied energy is
the Fermi energy, EF , which can be defined in terms of the integral form
of electron density ηe:

ηe =
∫ ∞

0
fo

FD(E, T )D(E)dE =
∫ EF

0
D(E)dE, (3.27)

where the latter equality derives from the fact that the Fermi-Dirac func-
tion is unity below the Fermi energy and zero above it at zero absolute
temperature. In order to keep the derivation more general, we will refrain
from deriving an explicit expression for EF , because doing so would require
us to assume a specific form of D(E).

To assist in deriving the electron specific heat, an alternative specific in-
ternal energy u∗ can be defined to simplify the subsequent integral analysis:

u∗ ≡ ue − EF ηe (3.28)

=
∫ ∞

0
Efo

FD(E, T )D(E)dE −
∫ ∞

0
EF fo

FD(E, T )D(E)dE

=
∫ ∞

0
(E − EF )fo

FD(E, T )D(E)dE. (3.29)

This contrivance is useful because the subtracted term in Eq. (3.28) is a
constant, resulting in a null temperature derivative. Using Eq. (3.27) this
constant term can be expressed as an integral involving the distribution
function and density of states. The final equality (Eq. (3.29)) contains
the difference (E − EF ), which also appears in the distribution function
fo

FD(E, T ) through the common and broadly valid assumption of equality
between the electrochemical potential µ (which exhibits a significant tem-
perature dependence only at extremely high temperatures for which the
thermal energy approaches the Fermi energy; see Eq. (2.11)) and the Fermi
energy EF (which is by definition a constant) (Kittel, 2007).

The electron specific heat can now be expressed by the temperature
derivative of u∗:

cv,e =
∂u

∂T
=
∂u∗
∂T

=
∫ ∞

0
(E − EF )

∂fo
FD

∂T
D(E)dE. (3.30)

The temperature derivative of the Fermi-Dirac distribution function is non-
negligible only in a small region about the Fermi energy. Therefore, the
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density of states term can be replaced with an integral pre-factor of D(EF ),
resulting in:

cv,e ≈ D(EF )
∫ ∞

0
(E − EF )

∂fo
FD

∂T
dE = k2

BTD(EF )
∫ ∞

−EF
kB T

x2ex

(ex + 1)2
dx,

(3.31)

where x = (E − EF )/(kBT ). Finally, recognizing that typically EF >>
kBT , the lower bound of the integral can be approximated as −∞, enabling
analytical evaluation:

cv,e ≈ π2

3
k2

BTD(EF ). (3.32)

Substituting the density of states for three-dimensional free-electron metals
(see Eq. (2.22)), the specific heat becomes:

cv,e ≈ mk2
B

√
2mEF

3!3
T

=
π2k2

Bηe

2EF
T, (3.33)

where the latter equality derives from the definition of the Fermi energy
for a parabolic band (Eq. (1.40)). A distinguishing feature of the final
result is the linear temperature dependence, which can be used to assess
the relative contributions of electrons (∼ T 1) and phonons (∼ T 3) in metals
at low temperatures (i.e., well below the Debye and Fermi temperatures).

3.2.4 Specific Heat for Low-Dimensional Structures

The specific heat integral in k-space (Eq. (3.5)) can be converted to fre-
quency space generally (i.e., without invoking a dispersion assumption such
as the Debye approximation) for phonons through the use of the density of
states:

cv =
∂u

∂T
=

∑

p

∫
Ei,p(k)
(2π)d

∂fo
BE

∂T
dk

=
∑

p

∫
!ωDdD(ω)

∂fo
BE

∂T
dω, (3.34)

where d represents the dimensionality of the problem (i.e., “dD = 1D” for
d = 1).
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Then, applying the Debye model’s density of states, a general expression
for the Debye specific heat of acoustic phonons becomes:

cv,D = d × ηakB

∑

p

(
T

θD,p

)d ∫ θD/T

0

xd+1exdx

(ex − 1)2
. (3.35)

This result reinforces the memorable result that the specific heat for low
temperatures is proportional to temperature raised to the power of the di-
mensionality for temperatures well below the Debye temperature, as shown
in Fig. 3.4. The results indicate that the power law relationship cv ∼ T d

holds well up to T ≈ 0.1θD. Consequently, the temperature dependence
of specific heat (a property that is relatively easy to measure) provides a
means of assessing the effective dimensionality of the medium under study.

Fig. 3.4 Variation of specific heat with temperature for low-dimensional structures,
as predicted by the Debye model. Notice the T d dependence of specific heat at low
temperatures, where d is the dimensionality of the medium.
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3.3 Thermal Conductivity from Kinetic Theory

The foregoing expressions for specific heat serve important roles in de-
termining a second prominent thermal property—thermal conductivity.
Various approaches are available to derive the latter quantity, and here
we offer the most common and intuitive derivation. The subsequent chap-
ters consider other derivation approaches that are generally more rigorous
and versatile.

Kinetic theory covers broadly the behavior of particles in an ensemble
and can be used to derive many thermophysical properties (Vincenti and
Kruger, 1967). The basic theory treats particles as independent entities
that can collide, or scatter, with each other or with other objects such as
defects and boundaries. As such, the approach is somewhat agnostic to the
type of particle, as long as its velocity and ability to carry a property (such
as thermal energy) are known.

Figure 3.5 shows this scenario schematically. An energy-carrying par-
ticle (e.g., electron or phonon in the present context) sits at the vertical
position z + Λz within a field of particles with average intensive internal
energy u that depends on position z. The particles move in three dimen-
sions randomly and experience a collision one time for every distance Λ
traveled, on average. The distance Λ is termed the mean free path, or scat-
tering length. In the case of the particle highlighted in Fig. 3.5, the vertical
(z) component of its distance traveled before its next collision is Λz, as its
direction makes a polar angle θ with the z axis.

The heat flux rate (per unit area) can be expressed in terms of the
z-components of the particle velocity and mean free path:

q′′z =
1
2
vz [u (z − Λz) − u (z + Λz)] , (3.36)

where the 1
2 term derives from the fact that only half the particles move

up from z − Λz or down from z + Λz, and vz is the z-component of the
particle’s velocity. The energy difference in Eq. (3.36) can be expanded as
a Taylor series:

u(z + Λz) = u(z − Λz) +
∂u

∂z

∣∣∣∣
z

(2Λz) + ϑ
(
Λ2

z

)
. (3.37)

Using Λz = Λ cos θ and vz = v cos θ, the heat flux becomes:

q′′z ≈ −vzΛz
∂u

∂z
= −

(
cos2θ

)
vΛ

∂u

∂z
. (3.38)
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Fig. 3.5 A schematic depicting the kinetic theory of thermal conductivity. An atom
at z + Λz travels a distance equivalent to its mean free path, Λ (Λz in the z-direction),
before experiencing a collision. This atomic motion results in a heat flux, along the
z-direction, which is a function of the particle velocity and the particle mean free path.

The foregoing steps assumed a specific direction of motion, but the ac-
tual directions within the ensemble are randomized. Therefore, an average
heat flux must be defined by integrating over all possible directions through
the three-dimensional solid angle dΩ = sin θdθdψ, where ψ is the azimuthal
angle:

〈q′′z〉 = −vΛ
∂u

∂z

[
1
2π

∫ 2π

0

∫ π
2

0
cos2θ sin θdθdψ

]

= −1
3
vΛ

∂u

∂z
. (3.39)

Assuming that the scattering processes are frequent enough to establish
local thermodynamic equilibrium (which is not the case for predominantly
ballistic transport), the chain rule can be applied to convert the energy



September 14, 2013 12:8 World Scientific Book - 9in x 6in B1652 ch03

76 Thermal Energy at the Nanoscale

gradient to a temperature gradient:
∂u

∂z
=
∂u

∂T

∂T

∂z
. (3.40)

Importantly, the first term on the right side is the previously developed
specific heat (Eq. 3.1), and the average heat flux can be expressed as:

〈q′′z 〉 = −1
3
vΛ

∂u

∂T

∂T

∂z
= − 1

3
cvvΛ

︸ ︷︷ ︸
κ

∂T

∂z
, (3.41)

where the final form matches that of the classical Fourier’s law, q′′z =
−κ(∂T/∂z). The foregoing derivation therefore relates a material’s thermal
conductivity κ to the specific heat, velocity, and mean free path of thermal
energy carriers:

κ =
1
3
cvvΛ. (3.42)

Some important issues and caveats concerning this expression follow:

• Thermal conductivity inherits the temperature dependence of the
specific heat, velocity, and mean free path. We have considered
elements of the first two, the last remains for the subsequent two
chapters.

• The derivation above was somewhat casual regarding the variability
of carrier velocity, which depends on the distribution function and
occupation statistics. We will consider these issues further in the
next chapter.

• For very small materials, any or all of the three components can
be influenced substantially by the size of the domain under study,
its lattice and defect structure, and its temperature.
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Example Problems

Problem 3.1: Graphene ZA branch specific heat

In this chapter, we obtained integral expressions for the specific heat
of branches that can be approximated with a linear dispersion (De-
bye model) and constant dispersion (Einstein model). The ZA branch
of graphene, which represents out-of-plane vibrations (see Appendix),
is however closely approximated near the Brillouin zone center by a
quadratic dispersion relation of the form ω = CK2 where C is a con-
stant.

(a) Determine the maximum cutoff wavevector KQ and the corre-
sponding cutoff frequency ωQ in terms of the unit cell density ηa.

(b) Obtain an integral expression for the specific heat of the ZA branch
as a function of temperature.

The low temperature specific heat of graphene shows a linear depen-
dence on temperature (see Fig. 3.6) which then becomes quadratic for
temperatures greater than 100 K. Can you explain this behavior based
on your knowledge of the dispersion relation of graphene (see Chapter 2
Examples for a plot) and the expression you have just obtained in this
problem?

Solution

(a) The cutoff wavevector KQ is found by equating the number of
states in k-space within a circle of radius KQ to the total number
of unit cells N .

πK2
Q(

2π
L

)2 = N, KQ = (4πηa)1/2, (3.43)

where ηa is the number of unit cells per unit area. The cutoff
frequency ωQ is then obtained from the dispersion relation:

ωQ = 4Cπηa. (3.44)

(b) The specific heat cv,ZA is given by:

cv,ZA =
∫ ωQ

0
!ω∂fo

BE

∂T
DQ,2D(ω)dω, (3.45)
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where DQ,2D(ω) is the two-dimensional density of states under the
quadratic dispersion model:

DQ,2D(ω) =
1
L2

dN

dω

=
1
L2

dN

dK

dK

dω

=
1
L2

d

dK

(
πK2

(2π/L)2

)
1

2CK

=
1

4πC
. (3.46)

Thus the DOS of the ZA branch is a constant. Substituting the
above expression into the integral in Eq. (3.45), and using the
derivative of the Bose-Einstein distribution function, we obtain:

cv,ZA =
1

4πC

∫ ωQ

0
!ω exp(!ω/kBT )

(exp(!ω/kBT )− 1)2
!ω

kBT 2
dω

= ηakB

(
T

θQ

)∫ θQ/T

0

x2ex

(ex − 1)2
dx, (3.47)

where x = !ω/kBT and θQ = !ωQ/kB (analogous to the Debye
temperature θD). For temperatures much less than θQ, the up-
per limit of the integral in Eq. (3.47) can be taken to be ∞, and
the specific heat is proportional to T . This result explains the
linear dependence of the specific heat of graphene at low tempera-
tures. At higher temperatures, the ZA branch becomes fully popu-
lated and the linear LA and TA modes contribute to specific heat.
This explains the quadratic dependence at higher temperatures
(see Section 3.2.4).
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Fig. 3.6 Temperature dependence of the specific heat of graphene and graphite. Figure
originally published by Pop et al. (2012). Used with permission.

Problem 3.2: Specific heat of metals

Figure 3.7 shows experimental measurements of the heat capacity of
potassium at low temperatures. The following temperature dependence
is observed:

cv/T = 2.08 + 2.57T 2,

where cv/T has units of mJ/mol K2 and T is in K.

(a) Provide analytical expressions for the y-intercept and slope of the
graph. Hint: Neglect any optical phonon contribution to specific
heat as the experimental data are provided for low temperatures.

(b) Assuming that the conduction electron density in potassium is
1.34×1022 cm−3, determine the Fermi energy of potassium. Note
that the experimental data are expressed per mole of potassium,
while the heat capacity expressions derived in this chapter are per
unit volume. Assume the density and atomic mass of potassium
are 0.862 g/cc and 39 amu respectively.

(c) Potassium has a body-centered cubic (BCC) structure (1 atom
per primitive unit cell) with an atomic density of 1.33×1022
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atoms/cm3. Determine the Debye temperature of potassium
assuming that the three acoustic branches are replaced by a single
branch of uniform group velocity.

Solution

(a) Specific heat cv can be expressed as a sum of electron and phonon
contributions:

cv = cv,e + cv,p

=
π2k2

Bηe

2EF
T +

234ηakB

θ3D
T 3. (3.48)

Hence,

cv

T
=

π2k2
Bηe

2EF︸ ︷︷ ︸
y−intercept

+
234ηakB

θ3D︸ ︷︷ ︸
slope

T 2. (3.49)

(b) Using the experimental data and the result from part (a),

2.08 mJ/mol K2 = 4.59 × 10−5 J/cc K2 =
π2k2

Bηe

2EF
. (3.50)

Substituting kB = 1.3806× 10−23 J/K, ηe = 1.34× 1022 cm−3, we
obtain EF = 2.74 × 10−19 J = 1.71 eV.

(c) From the slope of the given graph and the result in part (a),

2.57 mJ/mol K4 = 5.68 × 10−5 J/cc K4 =
234ηakB

θ3D
. (3.51)

Substituting ηa = 1.33× 1022 atoms/cm3, we obtain θD = 91.1 K.
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Fig. 3.7 Temperature dependence of the specific heat of potassium and sodium. Figure
originally published by [Lien and Phillips (1964)]. Used with permission.

Problem 3.3: Thermal conductivity from kinetic theory

In this chapter, we derived the thermal conductivity of a three-
dimensional material from kinetic theory. Perform a similar analysis for
one- and two-dimensional materials to obtain the following generalized
expression:

κ =
1
d
cvvΛ,

where d is the dimension and can take the values 1, 2 or 3. Also
derive an integral expression for the thermal conductivity and observe
the temperature dependence at low temperatures. Assume that the
velocity and mean free path are independent of temperature and carrier
energy.

Solution

The following expression for heat flux q′′z was obtained in the chapter:

q′′z ≈ −vzΛz
∂u

∂z
= −vzΛz

∂u

∂T

∂T

∂z
= −cvvzΛz

∂T

∂z
. (3.52)
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In 1D, vz = v, Λz = Λ.

q′′z = −cvvΛ
∂T

∂z
. (3.53)

In 2D, vz = v cos θ, Λz = Λ cos θ. We average the heat flux over an
angle of π radians.

q′′z = −cvvΛ
∂T

∂z

1
π

∫ π

0
cos2 θdθ

= −1
2
cvvΛ

∂T

∂z
. (3.54)

In 3D, the heat flux is averaged over a solid angle of 2π steradians.

q′′z = −cvvΛ
∂T

∂z

1
2π

∫ 2π

0

∫ π/2

0
cos2 θ sin θdθdψ

= −1
3
cvvΛ

∂T

∂z
. (3.55)

From Eqs. (3.53)–(3.55), thermal conductivity κ in d dimensions is
given by,

κ =
1
d
cvvΛ. (3.56)

Substituting the low temperature result for specific heat cv, we find:

κ = ηakBvΛ
(

T

θD

)d ∫ ∞

0

xd+1exdx

(ex − 1)2
. (3.57)

Note that the Debye approximation is used in the above expression
for specific heat. Also we have neglected multiple phonon polariza-
tions. At low temperatures, the thermal conductivity shows the same
temperature dependence as the specific heat and scales as T d.
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Problem 3.4: Specific heat of a diatomic chain

Consider the diatomic chain studied in Chapter 1 with atomic masses
m1, m2 (m2 > m1) and a uniform atom spacing of a. Also assume a
uniform spring constant g between all adjacent atoms. In this problem,
we calculate the specific heat of the diatomic chain using the Debye
model for the acoustic branch and the Einstein model for the optical
branch. Assume that the constant frequency ωE in the Einstein model
is an average of the minimum and maximum frequencies of the optical
branch.

(a) Show that the ratio of Einstein and Debye temperatures can be
expressed in terms of the mass ratio m2/m1 as follows:

θE

θD
=

1
π

(√
m1

m2
+

√
m2

m1
+

√
1 +

m2

m1

)
.

(b) Calculate the normalized acoustic and optical phonon specific heats
(normalized by ηakB) at normalized temperatures of T/θD = 0.2, 1
and 2. Assume a mass ratio m2/m1 = 2. Also provide an intuitive
explanation of your numerical results.

(c) Use the online Chapter 3 CDF tool1 to evaluate the acoustic and
optical contributions to the total specific heat as a function of tem-
perature. Also observe how these contributions change with vary-
ing mass ratio. Again, provide a physical explanation for the trend
in the curves with varying mass ratio.

Solution

(a) The Einstein frequency ωE is calculated by taking an average of
the minimum and maximum frequencies of the optical branch. See
Section 1.6 for derivations of the minimum (ω+(K = π/a)) and
maximum (ω+(K = 0)) frequencies.

ωE =
1
2
(ω+(K = 0) + ω+(K = π/a))

=
1
2

(√
2g

µ
+

√
2g

m1

)

=
√

g

2

(√
m1 + m2 +

√
m2√

m1m2

)
. (3.58)

1See http://nanohub.org/groups/cdf tools thermal energy course/wiki

http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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The Debye frequency ωD is just the product of the group velocity
of the acoustic branch at the Brillouin zone center and the Debye
cutoff wavevector KD. In 1D, KD = πηa = π/a since the unit
cell density is 1/a. See Section 1.6 for a derivation of the group
velocity of the acoustic branch at the center of Brillouin zone.

ωD = vg(K = 0)KD

= a

√
gµ

2m1m2

π

a

= π

√
g

2(m1 + m2)
. (3.59)

From Eqs. (3.58) and (3.59), the ratio of Einstein and Debye tem-
peratures is given by:

θE

θD
=
ωE

ωD
=

1
π

(√
m1

m2
+

√
m2

m1
+

√
1 +

m2

m1

)
. (3.60)

(b) The specific heat of the acoustic branch is given by (see Section
3.2.4):

cv,D = ηakB

(
T

θD

) ∫ θD/T

0

x2exdx

(ex − 1)2
. (3.61)

For T/θD = 0.1, 1 and 2, cv,D/ηakB = 0.328, 0.973 and 0.993 re-
spectively (the integral was evaluated numerically). Observe that
the specific heat is very close to the Dulong and Petit limit of
cv,D = ηakB for temperatures higher than the Debye temperature.
The specific heat of the optical branch is given by (see Section
3.2.2):

cv,E = ηakB
χ2

EeχE

(eχE − 1)2
, (3.62)

where χE = θE/T . For m2/m1 = 2, θE/θD = 1.226 (using
the result derived in part (a) of this problem). Hence θE/T =
1.226θD/T . For T/θD = 0.1, 1 and 2, χE = 12.26, 1.226 and
0.613 respectively. Thus cv,E/ηakB = 0.0007, 0.884 and 0.969 for
T/θD = 0.1, 1 and 2 respectively. Note that the optical phonon
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Table 3.1 Acoustic and optical phonon specific
heats of a diatomic chain with m2/m1 = 2.
T

θD

cv,D

ηakB

cv,E

ηakB

cv,D

cv,D + cv,E
× 100%

0.1 0.328 0.0007 99.78%
1 0.973 0.884 52.4%
2 0.993 0.969 50.61%

specific heat is almost zero for T/θD = 0.1. This is because the
high frequency optical mode is negligibly populated at such low
temperatures. The optical phonon specific heat also approaches
the Dulong and Petit law for high temperatures.
Table 3.1 shows a summary of the results calculated. At low tem-
peratures, the heat capacity of the acoustic branch dominates that
of the optical branch. For temperatures above the Debye temper-
ature, cv,D/cv,E ≈ 1 indicating that both the acoustic and optical
modes contribute equally to specific heat.

(c) Figure 3.8 shows snapshots from the online Chapter 3 CDF tool
where the acoustic and optical contributions to the total specific
heat are plotted as a function of temperature. Clearly the acoustic
branch dominates the specific heat at low temperatures, and the
fractional contributions tend to 0.5 for very high temperatures.
As the mass ratio increases, the Einstein frequency moves farther
from the Debye frequency. Hence the temperature at which the
acoustic and optical contributions become equal also increases with
increasing mass ratio.

http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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Fig. 3.8 Acoustic and optical contributions to specific heat.
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Chapter 4

Landauer Transport Formalism

This chapter derives fundamental limits of heat transfer carried by phonons
and electrons between two contacts, or reservoirs. A general Landauer for-
malism is employed in combination with an enumeration of available elec-
tronic and vibrational states for a given problem. A significant portion of
the chapter focuses on spectral conductance—the thermal conductance per
unit spectral quantity such as energy, frequency, wavelength, or wavenum-
ber. The understanding of this spectral behavior ultimately enables the
engineering of a device through material size by, for example, suppressing
conduction at a given wavelength.

4.1 Basic Theory

We begin by establishing how thermal energy can be stored in a reser-
voir and the relevant wavelengths of energy carriers in those reservoirs.
Both phonons and electrons store energy through a distribution of energy
states, but these distributions differ because of the restrictions (or lack
thereof) on the number carriers that can occupy each state, as described
in Chapter 2. Electrons are governed by the Fermi-Dirac distribution func-
tion, which restricts each state to hold up to two electrons, whereas the
number of phonons in a given state is unlimited, resulting in the Bose-
Einstein distribution.

Our interest is to develop relations for thermal transport between two
thermal reservoirs connected by a device, as shown in Fig. 4.1(a) for the
general problem. To illustrate the calculation of net heat flux, we first
address transport in the simplified all-1D structure of Fig. 4.1(b).

The total heat flux (i.e., heat flow rate per unit contact ‘area’, with
units of W/md−1, where d is the problem dimension) from the left reservoir

87
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devicelength  L
   

contact area
A

cold
reservoir
T2

hot reservoir
T1

(a)

hot 
reservoir

T1

cold reservoir
T

2

device

(b)

Fig. 4.1 Schematic of a general contact-device-contact arrangement with (a) 3D (bulk)
and (b) 1D (wire) contacts.

to the right can be calculated by summing the product of energy density
and velocity over all wavevectors with positive x-components as

JQ,L→R(T1) =
1
Ld

∑

p

∑

k;kx>0

vgx,p(k)Tp(k)

× [Ei,p(k) − µ] [fo
i (Ei,p(k), T1) + c0] , (4.1)

where Tp(k) represents the transmission function, which accounts for the
probability of transport through the device,1 and the x direction lies along

1We note that the companion books in this series by Datta (2012) and Lundstrom and
Jeong (2013) use the Latin symbol T for transmission function; here we use the modified
T , because T holds a reserved place for thermal scientists and engineers.
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the axis of the device. For 3D systems, JQ is equivalent to the heat flux q′′

of the previous chapter. Note that the presence of the chemical potential µ
accounts for the equilibrium energy levels in the reservoir and the associated
redistribution that occurs to maintain thermodynamic equilibrium when a
carrier leaves the reservoir.

A reciprocal expression to Eq. (4.1) can be formed for heat flow from
the right reservoir to the left, and the net heat flux can then be expressed
as their sum:

JQ,net =
1
Ld

∑

p

∑

k;kx>0

vgx,pTp [Ei,p − µ] [fo
i (T1) + c0]

+
1
Ld

∑

p

∑

k;kx<0

vgx,pTp [Ei,p − µ] [fo
i (T2) + c0]

=
1
Ld

∑

p

∑

k;kx>0

vgx,pTp [Ei,p − µ] [fo
i (T1) − fo

i (T2)] , (4.2)

where the energy and wavevector dependencies of the various terms are
now and hereafter implied, and the group velocity is negative for kx < 0.
Notably, we see that the c0 terms related to the zero-point energy (see
Eq. (2.12)) cancel each other. This effect suggests that the assessment of
the ‘dominant’ phonon wavelength for thermal transport discussed later
should exclude this term, as its effect is nullified by carriers moving in
opposing directions.

Our interest is to study transport processes, and as such, the double
summation in Eq. (4.2) is cumbersome. In particular, we would like to
turn the summation over k-space (i.e., over all active wavelengths and di-
rections) into an integral. The summation over polarization branches (e.g.,
longitudinal-acoustic, transverse-optical, etc. for phonons) normally must
remain (or else be subject to approximation), but the summation over k-
space can be converted to a Landauer integral according to the dimension-
ality of the problem:

JQ,net =
1
Ld

∑

p

∑

k;kx>0

vgx,pTp [Ei,p(k) − µ] [fo
i (T1) − fo

i (T2)] , (4.3)

(1D) =
∑

p

∫ ∞

0

vg,pTp [Ei,p(k) − µ]
2π

[fo
i (T1) − fo

i (T2)] dk, (4.4)
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(2D) =
∑

p

∫ π
2

−π
2

∫ ∞

0

vg,p cos θTp [Ei,p − µ]
4π2

[fo
i (T1) − fo

i (T2)] kdkdθ

=
∑

p

∫ ∞

0

vg,pTp [Ei,p(k) − µ]
2π2

[fo
i (T1) − fo

i (T2)] kdk, (4.5)

(3D) =
∑

p

∫ 2π

0

∫ π
2

0

∫ ∞

0

vg,p cos θTp [Ei,p − µ]
8π3

× [fo
i (T1) − fo

i (T2)] k2dk sin θdθdψ

=
∑

p

∫ ∞

0

vg,pTp [Ei,p(k) − µ]
8π2

[fo
i (T1) − fo

i (T2)] k2dk, (4.6)

where θ is the angle formed by the x-axis and the velocity (
−→
k ) direction,

and Eqs. (4.5) and (4.6) assume that transmission function is independent
of direction. Notably, the explicit domain ‘volumes’ Ld in Eq. (4.2) cancel
in the conversion to an integral. Also of importance for later use is the
derivative of the distribution function with respect to temperature, which
was provided in Eq. (3.6). This function will be used extensively in formu-
lations of thermal conductance.

The heat flux is commonly expressed in terms of an integral over fre-
quency (phonons) or energy (electrons) instead of the generic k-space used
above (which applies to either phonons or electrons). For phonons, the
conversion to frequency space involves the introduction of the density of
states per unit frequency D(ω) (see Eqs. (2.19)–(2.21)). With the null
chemical potential µ associated with bosons and substituting !ω = E, the
dimension-specific heat fluxes become:

JQ,ph =

(1D) =
∑

p

∫ ∞

0

1
2
vg,pD1D(ω)Tp(ω)!ω [fo

BE(T1) − fo
BE(T2)] dω, (4.7)

(2D) =
∑

p

∫ ∞

0

1
2

2vg,p

π
D2D(ω)Tp(ω)!ω [fo

BE(T1) − fo
BE(T2)] dω, (4.8)

(3D) =
∑

p

∫ ∞

0

1
2

vg,p

2
D3D(ω)Tp(ω)!ω [fo

BE(T1) − fo
BE(T2)] dω, (4.9)
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where we have now made explicit the possible dependence of the transmis-
sion function on frequency.

For electrons, we retain the finite chemical potential µ, use the density of
states (Eqs. (2.23)–(2.25)), and integrate over energy rather than frequency:

JQ,el =

(1D) =
∫ ∞

0

1
2
vgD1D(E)T (E)(E − µ) [fo

FD(T1) − fo
FD(T2)] dE, (4.10)

(2D) =
∫ ∞

0

1
2

2vg

π
D2D(E)T (E)(E − µ) [fo

FD(T1) − fo
FD(T2)] dE, (4.11)

(3D) =
∫ ∞

0

1
2

vg

2
D3D(E)T (E)(E − µ) [fo

FD(T1) − fo
FD(T2)] dE, (4.12)

where we have eliminated the summation, which is unnecessary for electrons
with non-overlapping bands.

4.2 Number of Modes

The grouping of terms in the heat flux relations of Eq. (4.7)–(4.12) provides
a useful basis for understanding the underlying physics. Lundstrom and
Jeong (2013) provide an elegant parallel treatment for electrical current
that we will adapt here for thermal current, or Q (in W), which is the
product of the thermal current density JQ and ‘area’ (null for 1D, contact
width W for 2D, and contact area A for 3D). For phonons, a general form
for thermal current, or heat flow rate, is:

Qph =
1
2π

∫ ∞

0
M(ω)T (ω)!ω [fo

BE(T1) − fo
BE(T2)] dω, (4.13)

where M(ω) is called the ‘number of modes’ and represents the number of
carrier half-wavelengths that fit into the contact ‘area’.2 For example, in
purely one-dimensional transport, the contact can fit only one carrier in its
cross section, and M(ω) is simply 1. For two-dimensional problems (e.g.,

2This result is mathematically identical to that derived by Lundstrom and Jeong (2013)
for phonons, who express the variable of integration as !ω.
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Fig. 4.2 Schematic of the number of modes M . This factor is essentially the number
of half-waves for a carrier with wavelength λ (and corresponding energy E derived from
the carrier’s dispersion) that fit into a cross-section of the device perpendicular to the
direction of transport.

a thin film device), the number of modes will increase in proportion to the
contact length W , as shown in Fig. 4.2.

The corresponding expressions for each dimensionality are:

M(ω) =

(1D) = M1D(ω), (4.14)

(2D) = WM2D(ω), (4.15)

(3D) = AM3D(ω). (4.16)

Then, using JQ(1D) = Q, JQ(2D) = Q/W , and JQ(3D) = Q/A and com-
paring to the phonon expressions in Eqs. (4.7)–(4.9), we can deduce the
following relations for mode densities:

M1D(ω) = 1 = π[vg(ω)]D1D(ω), (4.17)

M2D(ω) =
K(ω)
π

= π

[
2vg(ω)
π

]
D2D(ω), (4.18)

M3D(ω) =
K(ω)2

4π
= π

[
vg(ω)

2

]
D3D(ω), (4.19)
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where we repeat the frequency-based phonon density of states from
Chapter 2 (Eqs. (2.19)–(2.21)), given their importance here:

D1D(ω) =
1
L

dN1D

dω
=

1
L

dN1D

dK

dK

dω
=

1
vg(ω)π

, (4.20)

D2D(ω) =
1
L2

dN2D

dω
=

1
L2

dN2D

dK

dK

dω
=

K(ω)
2πvg(ω)

, (4.21)

D3D(ω) =
1
L3

dN3D

dω
=

1
L3

dN3D

dK

dK

dω
=

K(ω)2

2π2vg(ω)
. (4.22)

The combination of Eqs. (4.17)–(4.22) gives a complete expression for the
number of phonon modes in each dimensionality:

M(ω) =

(1D) = π[vg(ω)]
1

vg(ω)π
= 1, (4.23)

(2D) = Wπ

[
2vg(ω)
π

]
K(ω)

2πvg(ω)
, (4.24)

(3D) = Aπ

[
vg(ω)

2

]
K(ω)2

2π2vg(ω)
. (4.25)

The foregoing equations can be altered to demonstrate the interpretation
of the number of modes as representing the maximum number of half-
wavelengths in the device cross-section. Using K = 2π/λ, Eqs. (4.24) and
(4.25) become:

M(ω) =

(2D) =
W

λ/2
, (4.26)

(3D) =
A

4
π

(
λ
2

)2 , (4.27)

where the factor 4/π in the latter equation is related to the number of
wavelengths that fit into a circle of area A (whose area is π/4× diameter2).
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The mode number results also reveal an unexpected outcome, namely
that the terms in square brackets of Eqs. (4.24) and (4.25) represent the
space-averaged x-component of group velocity for a given frequency ω. In
1D, the average is the same as the group velocity because motion is con-
strained to a single direction. In 2D, the average of cos θ around a semicircle
in the positive x direction is 2/π. In 3D, the corresponding average about
the solid angle hemisphere of 2π steradians is 1/2.

Similar analysis for electrons produces a result for electronic heat flow,
which in the following is expressed in the customary manner as an integral
in energy space:

Qel =
1
π!

∫ ∞

0
M(E)T (E) (E − µ) [fo

FD(T1) − fo
FD(T2)] dE, (4.28)

where the number of modes for electrons in a parabolic conduction band
has been derived by Lundstrom and Jeong (2013, Eq. (2.31)):

M(E) =

(1D) = M1D(E)

= H(E − Ec), (4.29)

(2D) = WM2D(E)

= Wgv

√
2m∗(E − Ec)

π! H(E − Ec), (4.30)

(3D) = AM3D(E)

= Agv
m∗

2π!2
(E − Ec)H(E − Ec), (4.31)

where H(E − Ec) represents the Heaviside function applied at the con-
duction band edge (E = Ec), gv is the electronic band degeneracy, and
m∗ is the electron effective mass. In comparing the phonon (Eq. (4.13))
and electron (Eq. (4.28)) expressions for heat flow Q, we find that they
differ by a factor 2 (when expressed in the same integral domain, ei-
ther energy E or frequency ω); this factor is a result of electronic spin
degeneracy.

4.3 Thermal Conductance

Thermal conductance GQ is, by definition, the ratio of heat flow rate (Q) to
the driving temperature difference (T1−T2). As the temperature difference
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becomes small, this ratio can be expressed in differential form:

GQ(T ) =
Q(T + δT/2, T − δT/2)

δT

(phonons) =
1
2π

∫ ∞

0
M(ω)T (ω)!ω∂fo

BE

∂T
dω, (4.32)

(electrons) =
1
π!

∫ ∞

0
M(E)T (E) (E − µ)

∂fo
FD

∂T
dE. (4.33)

The conductance expressions contain much useful information about the
spectral distribution of heat flow for a given carrier. Clearly, both expres-
sions depend on the temperature derivative of the equilibrium distributions
functions, which were given generically in Eq. (3.6) and are expressed here
for each carrier type:

∂fo
BE

∂T
= (fo

BE)2e!ω/kBT

(
!ω

kBT 2

)
, (4.34)

∂fo
FD

∂T
= (fo

FD)2e(Ei−µ)/kBT

(
Ei − µ

kBT 2

)
. (4.35)

These functions are plotted against energy in Figs. 4.3 and 4.4. Two
characteristics stand out in comparing the phonon (a) and electron (b) dis-
tributions. Firstly, the magnitude of the phonon function is much larger
than that for electrons. The reason for this difference is that bosons con-
tinue to fill a given state as temperature increases, whereas for electrons,
fo

FD is limited to a maximum of 1 by the Pauli exclusion principle. There-
fore, the variation of the distribution function is also limited. Secondly,
the derivative is always positive for phonons, whereas it transitions from
negative to positive at E = µ for electrons. The reason is that the chemical
potential µ is zero for bosons, and therefore the scaled energy (χ) must al-
ways be positive. For electrons, carriers with energy below µ are promoted
to higher energies as temperature increases. Consequently, the Fermi-Dirac
distribution function decreases with increasing temperature for E < µ, and
increases for E > µ. However, the integrand in the conductance expres-
sion of Eq. (4.33) is always positive because of the multiplicative factor
(E − µ).
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Fig. 4.3 Derivative of the distribution function normalized by temperature T ×
“

∂fo
i

∂T

”

as a function of normalized energy for phonons (χ = !ω
kBT ).

4.4 Spectral Conductance

The integrands of Eq. (4.32) (phonons) and Eq. (4.33) (electrons) are de-
noted as G′

Q and contain the spectral distribution of energy states that
contribute to heat conduction:

(phonons) G′
Q(ω, T ) =

1
2π

M(ω)T (ω)!ω∂fo
BE

∂T
, (4.36)

(electrons) G′
Q(E, T ) =

1
π!M(E)T (E) (E − µ)

∂fo
FD

∂T
. (4.37)

If for simplicity we normalize G′
Q by the number of modes M (it gener-

ally depends on the dispersion relation through the density of states) and
assume the case of perfect transmission (T = 1), then we can define a
normalized spectral conductance as:

G̃′
Q =

G′
Q

C0kBMT

= (fo
i )2eχχ2 , (4.38)
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Fig. 4.4 Derivative of the distribution function normalized by temperature T ×
“

∂fo
i

∂T

”

as a function of normalized energy for electrons (χ = E−µ
kBT ).

where C0 = (2π)−1 (phonons)

= (π!)−1 (electrons),

and χ =
!ω

kBT
(phonons)

=
E − µ

kBT
(electrons).

Plots of the normalized spectral conductance as a function of the scaled
energy χ (Fig. 4.5 and 4.6) reveal several important characteristics. First,
the normalized conductance per mode (recall the M in the denominator
of Eq. (4.38)) asymptotes to a value of unity for low-frequency phonons
(Fig. 4.5). This result indicates that each mode contributes roughly equally
to phonon heat conduction until the phonon energy increases beyond the
‘thermal energy’ kBT . In contrast, the low-energy electron modes con-
tribute little to heat conduction (Fig. 4.6) because the Pauli exclusion prin-
ciple embodied in their Fermi-Dirac statistics effectively freezes out their
participation. In other words, the thermal energy is not high enough to pro-
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Fig. 4.5 Normalized phonon spectral conductance G̃′
Q as a function of normalized en-

ergy χ.

mote low-energy electrons to available energy states, i.e., near the Fermi
energy (E ≈ µ). Therefore, thermal perturbations of electrons away from
equilibrium are compensated by a reshuffling of electron occupation near
the Fermi energy, where available states exist.

The results for spectral conductance to this point have remained gen-
eral because they have avoided the need to specify particular dispersion
relations for phonons [ω(K) or K(ω)] and electrons (E(k)). However, these
relations are required to determine spectral peaks, which are useful in iden-
tifying portions of the spectrum that contribute most substantially to heat
conduction. To maintain some of the generality of the foregoing results,
here we consider generic frequency (energy) moments of the normalized
spectral conductance for phonons (electrons).

The rationale for this approach derives from the factors that comprise
the definition of the number of modes M , Eqs. (4.23)–(4.25) for phonons
and Eqs. (4.29)–(4.31) for electrons. Inspection of the phonon equations
reveals that the group velocity vg(ω) cancels in each dimensionality. Con-
sequently, the number of phonon modes generally scales as:

M(ω) ∼ K(ω)d−1, (4.39)
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Fig. 4.6 Normalized electron spectral conductance G̃′
Q as a function of normalized

energy χ.

where d is the dimensionality. Thus far, we have not yet invoked a phonon
dispersion assumption. The Debye model is surely the most common dis-
persion approximation for acoustic phonons, with K ∼ ω (see Eq. (3.7)).
Consequently, the number of modes scales as:

M(ω) ∼ χd−1, (4.40)

where χ = !ω/(kBT ). Therefore, the quantity χαG̃′
Q will identify the

peaking behavior that we seek. Here, the notional relationship between the
exponent α and the dimensionality d is α ≈ (d− 1). However, a cautionary
note is required, as some nanoscale materials such as graphene contain
unique phonon branches that do not conform to the K ∼ ω proportionality
of the Debye approximation.3 For now, we will consider α as a general
parametric variable.

Figure 4.7 shows the resulting variation of the product of χα and the
normalized phonon spectral conductance G̃′

Q as a function of scaled energy

3In addition, any dispersion relation ω ∼ Kx that goes through the origin of a ω − K
plot is not appropriate for optical phonons.
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Table 4.1 Values of χ for phonons corresponding to the peaks in χαG̃′
Q.

α χpeak Notes
0 - 1D materials under the Debye approximation. No peak.
1 2.58 2D materials under the Debye approximation.
2 3.83 3D materials under the Debye approximation.
3 4.93 Special case.

χ = !ω/kBT . All curves except α = 0 exhibit peaks for values of χ in
the range of 2 to 5, as shown in Table 4.1. These peaks correspond to
a maximization of spectral conductance for a given α as discussed above,
and conform to the order of magnitude relation !ωpeak ∼ kBT . The peaks
generally increase with increasing α because more energy is contained in
higher frequencies (wavevectors) as dimensionality increases, as indicated
by the earlier expressions for phonon density of states (Eqs. (2.19)–(2.21)).
The absence of a peak for α = 0 is related to the discussion associated with
Fig. 4.5, which indicates that each mode contributes equally to conductance
at low frequencies. The condition α = 0 corresponds to the independence
of the number of modes M with respect to frequency (or energy), and
therefore no peak exists for this special case.

The parallel analysis for electrons is not nearly as straightforward be-
cause of the presence of the conduction band minimum energy EC in the def-
inition of M(E) (see Eqs. (4.29)–(4.31)) and the generally non-zero chemical
potential µ. The electronic number of mode results, which derive from a
parabolic band assumption, indicate that the number of electron modes
scales with dimensionality d as M ∼ E(d−1)/2. Given the foregoing com-
plications, we illustrate the results for normalized conductance through a
contrived condition of EC = µ = 0. A practical basis for this contrivance is
the case of a semiconductor with n-type doping such that the Fermi energy
matches the bottom of the conduction band. With these assumptions, the
product χηG̃′

Q with η = (d−1)/2 represents the dimensionless conductance
with appropriate weighting of the number of modes. The resulting spec-
tral variation appears in Fig. 4.8, and as for phonons the spectral energy
peaks occur at small multiples of the thermal energy kBT . The peak values
are provided in Table 4.2, and again, they increase mildly with increasing
dimensionality according to the dependency of the density of states.

To conclude this section, we highlight other useful spectral peaks. Often,
we are interested in the wavelength at peak conductance than frequency or
energy. For electrons in metals, the peak conductance occurs near the
Fermi energy, and therefore the Fermi wavevector (Eq. (1.39)) can be used
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Fig. 4.7 χα moments (α = 0, 1, 2, 3) of the normalized phonon spectral conductance
G̃′

Q as a function of normalized phonon energy (or frequency) χ.

Table 4.2 Values of χ for electrons corresponding to
the peaks in χηG̃′

Q for EC = µ = 0.

η χpeak Notes
0 2.40 1D materials with parabolic bands.

0.5 2.82 2D materials with parabolic bands.
1.0 3.24 3D materials with parabolic bands.

in the approximation λpeak ≈ 2π/kF . Taking aluminum as an example, the
Fermi energy is EF = 11.6 eV, which dictates a Fermi wavevector of kF =
1.745×1010 m−1. The corresponding wavelength is λF = 2π/kF = 0.36 nm,
approximately the length of a typical interatomic bond. The minor energy
correction of order kBT as implied by Fig. 4.8 would have a negligible effect
on this result.

For phonons, the following example illustrates the calculation of a peak
wavelength that maximizes spectral conductance in the frequency spec-
trum. For bulk (3D) aluminum, the phonon conductance will peak at:

ωpeak = 3.83
kBT

! , (4.41)
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Fig. 4.8 χη moments (η = 0, 0.5, 1.0) of the normalized electron spectral conductance
G̃′

Q as a function of normalized energy χ for the special case of EC = µ = 0.

which corresponds to ωpeak = 38.6 × 1012 rad/sec at T = 77 K (liquid
nitrogen temperature). To find the corresponding approximate wavelength,
we start with aluminum’s Debye temperature (θD = 394 K, Ashcroft and
Mermin, 1976) and then use Eq. (3.14) and ηAl = 6.03 × 1028 atoms/m3

to compute the average group velocity, vg,ave = 3375 m/s. Then, knowing
this value, the wavevector at peak conductance is:

Kpeak = ωpeak/vg,ave = 1.14 × 1010 rad/m, (4.42)

and the corresponding phonon wavelength at peak conductance is:4

λpeak =
2π

Kpeak
= 0.55 nm, (4.43)

(cf., the average interatomic spacing of Al, η−1/3
Al = 0.26 nm).

4This result is the wavelength at peak conductance in the frequency spectrum and
would be slightly different if the problem were posed within the wavelength spectrum,
as done to derive Wien’s displacement law for thermal radiation—see Fig. 2.7(b).
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This type of spectral analysis is particularly important in determining a
material’s functional dimensionality (i.e., 1D, 2D, or 3D). Considering the
example of Al above, if the material is formed in the shape of a nanowire
with a square cross-section of 10 nm by 10 nm, then its phonon behavior
would be considered bulk (3D) at T = 77 K because λpeak & 10 nm.
However, for a lower temperature of T = 1 K, the corresponding wavelength
at peak spectral (frequency) conductance is λpeak = 42 nm ' 10 nm,
and the material would essentially behave as a 1D thermal conductor with
infinitesimal transverse-direction wavevector components (i.e., M = 1) that
correspond to rigid-body motion (i.e., infinite corresponding wavelength
components).

To close this section, we expand further on the importance of other
spectral bases. In all the foregoing development, we have chosen frequency
as the spectral quantity for phonon thermal conductance G′

Q(ω, T ) (see
Eq. (4.36)) and energy for electronic thermal conductance G′

Q(ω, T ) (see
Eq. (4.37)), as well as their normalized counterpart G̃′

Q (see Eq. (4.38)).
Further, in the immediately preceding development, we have calculated the
energies, frequencies, and carrier wavelengths corresponding to peaks in
these conductances. However, a wavevector or wavelength spectral basis
instead of frequency or energy for the conductance would produce slight
differences in the peak values of energy, frequency, wavevector, and wave-
length. The analogous procedure for thermal radiation produces the well-
known Wien’s displacement law, which is used to calculate the peak emis-
sion wavelength (Modest, 2003). The general conversion from a frequency
spectral basis to a wavelength basis can be achieved by applying the chain
rule:

G̃′
Q,λ = G̃′

Q
dω

dK

∣∣∣∣
dK

dλ

∣∣∣∣ = G̃′
Qvg

2π
λ2

, (4.44)

where the absolute value is applied to account for the inverse relationship
between frequency and wavelength. Once this procedure is accomplished,
the energy (or χ) moments should be applied according to the problem’s di-
mensionality (cf., Fig. 4.7) and with proper accounting for the relationship
between energy and wavelength, and then the peak conductance and cor-
responding wavelength can be calculated. We leave detailed calculations as
exercises to interested readers and/or participants in the companion online
course.5

5see http://nanohub.org/groups/u/
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4.5 Example: The Quantum of Thermal Conductance

In this section we derive the quantum of thermal conductance, a seminal
result of condensed matter physics. The end result is a simple expression
for the maximum rate of heat flow that a single mode can carry between
two isothermal reservoirs per unit temperature difference between the reser-
voirs. This problem was first solved by Rego and Kirczenow (1998). Here,
the foundational theory in the preceding sections makes the solution quite
straightforward.

The quantum of thermal conductance involves, by definition, a single
mode (M = 1) and perfect transmission (T = 1), and therefore the preced-
ing 1D results (with α = η = 0 in Figs. 4.7 and 4.8) apply. For phonons,
the corresponding normalized spectral conductance asymptotes to a value
of 1 for low frequencies (or scaled energies χ = !ω/kBT ), and decays to
0 for values of χ substantially greater than 1. The dimensional quantum
of conductance can then be computed through integration of G̃′

Q(χ) over
χ ∈ (0,∞) as:

ĜQ,ph(T ) =
1
2π

∫ ∞

0
M(ω)T (ω)!ω∂fo

BE

∂T
dω

=
k2

BT

2π!

∫ ∞

0
M(χ)G̃′

Q(χ)dχ

=
k2

BT

2π!

∫ ∞

0
M(χ)(fo

BE)2eχχ2dχ, (4.45)

where the terms can be derived from algebraic manipulations of the di-
mensional conductance (Eq. (4.32)) and normalized spectral conductance
(Eq. (4.38)). Based on the graph of G̃′

Q(χ) in Fig. 4.5, we expect the
integral in Eq. (4.45) (excluding the pre-factor) to have an order of mag-
nitude of 1 assuming that M = 1 for all χ, and indeed, the exact integral
is

∫ ∞
0 (. . .)dχ = π2/3. Therefore, the quantum of thermal conductance can

be expressed succinctly as:

ĜQ,ph(T ) =
πk2

BT

6!
(
= T × 9.464 × 10−13 W/K2

)
. (4.46)

The foregoing result gives the maximum phonon conductance that a
single mode can provide. The magnitude of overall conductance can only
decrease when scattering is present (T < 1), and can only increase by
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adding more modes M of conductance (e.g., by increasing the conductor’s
dimensionality). The reason that the conductance quantum increases with
temperature is that the carriers in a single mode acquire higher energies (as
indicated by the distribution function) as temperature rises. New students
are often surprised by the small magnitude of ĜQ relative to typical thermal
conductances found in engineered systems (which are usually ∼ 1 W/K for
cooling technologies). The reconciliation derives from the concept of the
number of modes—these ‘real’ systems exist in higher dimensions that must
have tremendously large numbers of modes.

We note here an important caveat in the foregoing development. We
have assumed in Eqs. (4.45) and (4.46) that the number of modes remains
unity at least through values of χ at which the phonon occupation has
become so small that the integrand is negligible. This assumption allows
us to retain the upper limit of integration of ∞ so that the integral can
be evaluated analytically. However, for sufficiently high temperatures this
condition will not be satisfied, and for such cases the proper representation
for number of modes will be unity only for values of χ for which allowable
phonon frequencies exists. For example, with the phonon band structure
of the 1D diatomic chain (see Fig. 1.18 and the corresponding highlighted
bands of Fig. 4.9), the correct conductance expression becomes:

GQ,ph(T ) =
k2

BT

2π!

[∫ χmax,a

0
(fo

BE)2eχχ2dχ+
∫ χmax,o

χmin,o

(fo
BE)2eχχ2dχ

]
.

(4.47)

The foregoing expression will tend toward the value of the quantum of
thermal conductance (ĜQ,ph) for temperatures that satisfy kBT & !ωmax,a

(or equivalently, χmax,a ' 1).
The parallel treatment for electrons proceeds similarly, with the elec-

tronic quantum of thermal conductance integral expressed as:

ĜQ,el(T ) =
k2

BT

π!

∫ ∞

−µ
kBT

G̃′
Q(χ)dχ

=
k2

BT

π!

∫ ∞

−µ
kBT

(fo
FD)2eχχ2dχ, (4.48)

where the lower integral bound represents the value of χ when the electron
energy is E = 0. Assuming a low thermal energy relative to the chemical
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Fig. 4.9 Normalized frequency as a function of normalized wavevector for a diatomic
1D chain with m2 = 2m1. The shaded regions show the active frequency bands for
acoustic and optical branches. The corresponding limits on dimensionless energy χ are
shown on the right side.

potential, the lower bound can be approximated as −∞ to enable analytical
evaluation of the integral as

∫ ∞
−∞(. . .)dχ = π2/3 (i.e., the same numerical

value as the phonon integral). The explicit expression for the electronic
quantum of thermal conductance is:

ĜQ,el(T ) =
πk2

BT

3!
(
= T × 1.893× 10−12 W/K2

)
. (4.49)

We note that the factor of 2 difference between the final results for phonons
(Eq. (4.46)) and electrons (Eq. (4.49)) is simply the result of the latter’s
spin degeneracy.
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Example Problems

Problem 4.1: Application of the Landauer formula

Consider a rectangular block of silicon whose ends are maintained at
temperatures of 100 K and 50 K. Assume Debye dispersion for the
acoustic branches with group velocities of LA and TA modes being
7200 and 3200 m/s respectively. The group velocities of the optical
modes are assumed to be zero (Einstein dispersion). Calculate the
heat flux using the Landauer formula assuming ballistic transport, i.e.,
T = 1. Silicon has a diamond cubic structure with 2 atoms per unit
cell and an atom density of 5×1022 atoms/cm3.

Solution

The net heat flux between the hot and cold ends is given by:

JQ,net =
∑

p

∫ ∞

0

1
2

vg,p

2
D3D(ω)!ωTp(ω)[fo

BE(T1) − fo
BE(T2)]dω.

(4.50)
The density of states D(ω) under the Debye approximation is

given by:

D(ω) =






ω2

2π2v3
g

if ω < ωD

0 if ω > ωD

. (4.51)

The Debye cutoff wavevector KD = (6π2ηa)1/3 where ηa is the unit
cell density. Since silicon has two atoms per unit cell, the unit cell
density is 2.5×1022 cells/cm3 (half the atomic density). The Debye
cutoff wavevector KD = 1.13 × 1010 m−1. The corresponding Debye
cutoff frequency ωD = vgKD is 8.17×1013 rad/s for the LA mode and
3.63×1013 rad/s for the TA mode. Thus the expression in Eq. (4.50)
can be written as (Tp = 1):

JQ,net =
∫ ωD,LA

0

1
2

vg,LA

2
ω2

2π2v3
g,LA

!ω[fo
BE(T1) − fo

BE(T2)]dω

+ 2
∫ ωD,TA

0

1
2

vg,TA

2
ω2

2π2v3
g,TA

!ω[fo
BE(T1) − fo

BE(T2)]dω,

(4.52)
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where the factor of 2 in the second integral on the right side accounts
for two degenerate TA modes. Also note that the optical branches do
not contribute to heat flux as the group velocity is assumed to be zero.
Substituting T1 = 100 K and T2 = 50 K and evaluating the integrals
numerically, we obtain JQ,net = 1.85×1010 W/m2.

Problem 4.2: Number of modes

Consider an aluminum block of square cross-section (1cm×1cm). Cal-
culate the phonon frequency for a single acoustic branch at which the
spectral conductance is a maximum for a temperature of 300 K. Also
obtain the number of modes M(ω) at this frequency. Assume Debye
dispersion with a group velocity of 3400 m/s.

Solution

For 3D materials under the Debye approximation, spectral conductance
is a maximum when !ω/kBT = 3.83 (see Table 4.1). At T = 300 K,
this corresponds to a phonon angular frequency of 1.504×1014 rad/s.
The number of modes M(ω) is given by:

M(ω) = A
ω2

4πv2
g
. (4.53)

Substituting for the cross-sectional area A = 0.01 m2 and vg =
3400 m/s, we obtain M(ω = ωpeak) = 1.56 × 1018.

Problem 4.3: Quantum of thermal conductance

Consider an experiment to measure the quantum of thermal conduc-
tance on a monoatomic 1D chain with g = 25 N/m and m = 28 amu.
Assume ideal coupling of the 1D chain with hot and cold reservoirs
(T = 1). Calculate the maximum temperature at which the experi-
ment needs to be performed so as to measure a conductance within
10% of the quantum of conductance.

anonymous
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Solution

The phonon thermal conductance is given by the following integral:

GQ(T ) =
k2

BT

2π!

∫ ∞

0
M(χ)G̃′

Q(χ)dχ

=
k2

BT

2π!

∫ ∞

0
M(χ)fo

BE
2eχχ2dχ

=
k2

BT

2π!

∫ !ωmax
kBT

0
fo

BE
2eχχ2dχ, (4.54)

where ωmax = 2
√

g/m is the maximum phonon frequency of the 1D
chain. The last equality is obtained from the fact that the number of
modes is 1 only for ω < ωmax. The density of states and the number of
modes is zero for ω > ωmax. In order to measure a conductance within
90% of the quantum of conductance, we need the upper limit of the
integral to be greater than 4.7, i.e.,

∫ 4.7

0
fo

BE
2eχχ2dχ ≈ 0.9 ×

∫ ∞

0
fo

BE
2eχχ2dχ. (4.55)

The maximum phonon frequency of the 1D chain for the given set of
parameters is 4.63×1013 rad/s. From the equation !ωmax/kBT = 4.7,
we obtain a maximum temperature of approximately 75 K. Thus the
experiment needs to be performed at a temperature less than 75 K so
as to measure a conductance within 10% of the quantum of thermal
conductance. Figure 4.10 shows the variation in the ratio of conduc-
tance (G) to the quantum of thermal conductance (Go) as a function
of temperature. The ratio is close to 1 for very low temperatures and
decays for temperatures greater than 75 K.
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Fig. 4.10 Variation of conductance normalized by the quantum of conductance as a
function of temperature.

Problem 4.4: Spectral thermal conductance

(a) Obtain the scaling relation between the number of modes M(ω)
and the non-dimensional energy χ = !ω/kBT . Assume that the
dispersion relation is given by ω ∼ Kn and d is the number of
dimensions.

(b) The online Chapter 4 CDF tool6 plots the χα moments of the nor-
malized spectral conductance G̃′

Q(χ) where α is a function of d
and n obtained in part (a) of this problem. The CDF tool allows
the user to specify the dimension d and the exponent n in the dis-
persion relation. Use the tool to observe the trend in variation of
χpeak (the normalized energy at which χαG̃′

Q(χ) is a maximum).
Also provide a physical explanation for the observed trend.

(c) The LA and TA branches of graphene can be approximated with
Debye dispersion relations where the group velocities are given by
vg(LA) = 21300 m/s and vg(TA) = 13600 m/s. The ZA branch
is approximated by a quadratic dispersion relation near the Bril-
louin zone center (see Appendix) of the form ω = CK2, where
C = 5 × 10−7 m2/s. At T = 300 K, use the CDF tool to calcu-
late the phonon wavelengths at which the spectral conductance is
a maximum for the LA, TA and ZA branches.

6See http://nanohub.org/groups/cdf tools thermal energy course/wiki

http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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Solution

(a) Number of modes M ∼ Kd−1 ∼ ω(d−1)/n ∼ χ(d−1)/n.
(b) From the online Chapter 4 CDF tool, the peak frequency increases

as the number of dimensions increases for a given exponent n in the
dispersion relation. This result is a consequence of the fact that
more energy is concentrated in high frequency phonons as dimen-
sionality increases. Also no peak exists in the spectral conductance
for the 1D case.

(c) For the 2D case and under the Debye approximation (n = 1), we
obtain from the CDF tool χpeak ≈ 2.58 (see Fig. 4.11). When
quadratic dispersion (n = 2) is considered, we obtain χpeak ≈
1.8 (see Fig. 4.11). At T = 300 K, these correspond to angular
frequencies of 101.33 THz (n = 1) and 70.7 THz (n = 2). Using
the dispersion relation, we then obtain λpeak = 1.3 nm for the LA
branch, λpeak = 0.84 nm for the TA branch and λpeak = 0.53 nm
for the ZA branch.

Fig. 4.11 Variation of spectral conductance (χαG̃′
Q) as a function of normalized fre-

quency (χ) for d = 2. The black curve corresponds to Debye dispersion (n = 1) and the
red curve corresponds to quadratic dispersion (n = 2).

http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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Chapter 5

Carrier Scattering and Transmission

The content in this chapter seeks to move toward closure of the contact-
device-contact problem originally introduced in Fig. 1.1. Looking back at
the overarching questions posed in that section, we have answered each of
them to varying degrees of depth, except the last two:

• How do the carriers scatter as they move through the material?
• How do the boundaries and interfaces impede carriers?

Answers to these questions are addressed in this chapter with the caveat
that, like many expositions on technical subjects, this text has deferred
the most complicated subjects toward its conclusion. Perhaps this tactic
is employed so commonly in order to minimize early attrition amongst
the readership. Here, we might hope that the preceding topics and their
elucidation have motivated the reader to take on more challenging topics
in the interest of obtaining full understanding, if not mastery, of thermal
energy transport in our motivating model problem. Moreover, this chapter
focuses (although not exclusively) on phonon scattering, in deference to the
many excellent sources on electron scattering (Lundstrom, 2009).

5.1 Scattering Analysis in the Landauer Formalism

We begin with a general expression for the spectral thermal conductance
without regard to carrier type (Eq. (4.36) for phonons; Eq. (4.37) for
electrons):

G′
Q = C0M(E)T (E)(E − µ)

∂fo
i

∂T
, (5.1)

113
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where C is a constant that depends on carrier type. The purpose here is to
develop some intuition about the transmission function T . With reference
to the device region of Fig. 1.1, we might reasonably expect the transmission
function to decrease with increasing device length L and with a decrease
in the distance that a carrier travels between ‘scattering’ events (i.e., the
more often a carrier collides with something, the less likely it is to reach the
other side). We will denote this scattering length as Λ, which is also called
the mean free path. Our rudimentary intuitive model would then suggest:

T ∼ Λ
L

. (5.2)

In fact, this intuitive formulation can be quite accurate under ‘diffusive’
transport (i.e., when many scattering events occur in one traversal of the
device). However, the simple model becomes invalid for ballistic (and quasi-
ballistic) transport (i.e., Λ > L) because it produces a transmission value
greater than unity. An easy remedy is to modify the denominator slightly:

T =
Λ

Λ + L
. (5.3)

This expression now satisfies both the diffusive case, for which Λ
Λ+L ≈ Λ

#L
because Λ $ L, and the ballistic case (Λ % L) for which T = 1.

This model under diffusive conditions actually allows for a direct com-
parison to the thermal conductivity expression derived from kinetic theory
in Section 3.3, with a result that may be reassuring to readers concerned
with the qualitative nature of the foregoing reasoning.

5.2 Thermal Conductivity Revisited

Thermal conductivity κ is intimately related to thermal conductance GQ, as
the root words imply. The concept of thermal conductivity was developed,
in general, to represent a property of a material that does not depend on
its size or shape. Intuition suggests that thermal conductance, in contrast,
should decrease as the path length of heat flow (i.e., L) increases, and that
it should increase as the cross-sectional ‘area’ increases. The following rela-
tion normalizes these geometric factors out of the conductance to represent
thermal conductivity:

κ =
L

‘area’
GQ. (5.4)
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Then, substituting the integral phonon expression for GQ into Eq. (5.4),
the thermal conductivity for a single phonon branch becomes:

κ =
L

‘area’
1
2π

∫ ∞

0
M(ω)T (ω)!ω∂fo

BE

∂T
dω. (5.5)

Next, we recall the relation between the number of modes and ‘area’ (see
Eq. (4.16)):

M = ‘area’× MdD, (5.6)

where d again represents the problem’s dimensionality. Then, substitution
of the foregoing relation and the diffusive form of the transmission function
(T = Λ/L) into Eq. (5.5) yields:

κ =
L

‘area’
1
2π

∫ ∞

0
‘area’× MdD(ω)

Λ
L

!ω∂fo
BE

∂T
dω

=
1
2π

∫ ∞

0
MdD(ω)Λ(ω)!ω∂fo

BE

∂T
dω, (5.7)

where the mean free path is shown to allow for frequency dependence gen-
erally. The last substitution in Eq. (5.7) originates from the dimension-
specific mode densities (see Eqs. (4.17)–(4.19)), which take the general form:

MdD = π〈vgx〉DdD(ω), (5.8)

where 〈vgx〉 is the directionally averaged carrier velocity corresponding to
the problem’s dimensionality (see Eqs. (4.23)–(4.25)). Finally, assuming for
simplicity that the scattering length and average velocity do not depend on
frequency, the phonon thermal conductivity can be expressed as:

κ =
1
2
〈vgx〉Λ

∫ ∞

0
!ωDdD(ω)

∂fo
BE

∂T
dω

︸ ︷︷ ︸
cv of a phonon branch

, (5.9)

where the underbrace highlights that the integral term is identical to that
in the expression for phonon specific heat (Eq. (3.34)) for a single phonon
branch; a summation over all branches would give the total thermal conduc-
tivity. Importantly the resulting general form of the expression for thermal
conductivity κ ∼ cvvgΛ conforms to the thermal conductivity expression
derived in Chapter 3 from kinetic theory (see Eq. (3.42)). This consistency
is particularly reassuring given the rather qualitative intuition on which
the diffusive transmission function was postulated (T = Λ/L). This result
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also provides insight into another common thermal property called ther-
mal diffusivity α, which is defined as the ratio of thermal conductivity to
volumetric specific heat:1

α ≡ κ

cv
=

1
2
〈vgx〉Λ. (5.10)

This result is memorable in that the diffusivity is simply proportional to
the product of carrier velocity and mean free path.

The same treatment for electrons in which the conductance is expressed
in terms of an energy integral would produce a very similar result to that
derived here for phonons, and Appendix B provides a qualitative analysis
of electronic heat conduction as compared to phonons for graphene. Often,
the electronic contribution to thermal conductivity for a given material
is inferred from its electrical conductivity through the Wiedemann-Franz
Law. The reason for this preference is the relative simplicity of measuring
electrical conductivity (using common hardware such as multimeters) as
compared to thermal conductivity, which typically requires more exotic
calorimeters or indirect methods for very small materials Wang (2012).
The Wiedemann-Franz law, which is semi-empirical, is usually expressed in
terms of the Lorentz number Le:

κe = σeLeT, (5.11)

where σe is the electrical conductivity.
Proper selection of a value for Le requires some knowledge of the mate-

rial’s band structure. In a companion book within this series, Lundstrom
and Jeong (2013) cover this topic in detail, resulting in the following Lorenz
number for parabolic bands and an energy-independent mean free path:

Le = C

(
kB

q

)2

, (5.12)

where C = 2 for a non-degenerate band, and C = π2/3 for a degenerate
band.

5.3 Boundary and Defect Scattering

The primary challenge in accurate modeling of thermal conductance and
conductivity involves finding a suitable form of the mean free path Λ. Scat-
tering processes encompass a broad range of disparate physical concepts and

1The more common form uses the mass-based specific heat, whereby α = κ
ρcp

.
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processes. They are often assumed to be independent of each other (i.e.,
the occurrence of one type of scattering event does not affect the other
types). Phonon scattering can occur by a variety of mechanisms, and a
truly comprehensive exposition is beyond the present scope. Instead, this
text covers the most common physical scattering processes and associated
models for frequency (energy) and temperature dependence. In this regard,
the approach here harkens to that of Ziman (1972, p. 71), who wrote:

This subject is open-ended leading to such intractable prob-
lems as the dynamics of completely disordered systems such as
liquids and glasses. Nevertheless, if we confine ourselves to iso-
lated defects . . . we can now understand a number of interesting
physical phenomena.

For greater depth, the book by Kaviany (2008) admirably describes details
of internal phonon scattering process and models, as well as guidelines
for ‘quilting’ the models together over relevant parameter spaces such as
frequencies and temperatures.

A common surrogate for Λ is the scattering time τ :

τ =
Λ
vg

. (5.13)

This term represents the mean time between scattering events. An equally
(if not more) common descriptor is the scattering rate, which is simply the
inverse of the scattering time, τ−1 = vg/Λ. Only toward the end of this
chapter will we assemble the various scattering types into an ‘effective’ form.
The next section begins with the conceptually simplest type—boundary
scattering.

5.3.1 Boundaries

When a carrier encounters a material surface, it reflects back into the
the material. These reflections can impede heat flow, but the extent to
which this occurs depends on factors such as the surface roughness, and
the relative importance of such boundary scattering among all scattering
events greatly increases when the surfaces are near to each other, such as
in nanowires and thin films. Figure 5.1 shows a Cartesian geometry with
confined dimensions l1 and l2.

Intuition suggests that the scattering length should be closely related to
the thicknesses of the object. For example, we should expect that Λ ≈ l1
for ‘cross-plane’ heat flow (i.e., from bottom to top across the this film). In
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Fig. 5.1 Heat flow through a rectangular cross section of l1 × l2. The boundaries can
constrain the carrier mean free path.

this case, the boundary scattering rate would be:

τ−1
b ≈ Cvg/Λ = Cvg/l1, (5.14)

where the constant C should be approximately 1/3 based on the arguments
in the derivation of kinetic theory in Chapter 3. However, a cautionary note
is in order here because if the boundaries do indeed dominate transport,
then the medium should be considered ballistic (or quasi-ballistic) rather
than diffusive. Moreover, if this scattering rate is to be meaningful in the
context of thermal conductivity, then the upper and lower surfaces would
need to be connected to contact materials, and the boundaries would be
best represented as interfaces—a subject deferred to Section 5.6.

Conversely, for ‘in-plane’ heat flow in the direction shown in Fig. 5.1,
we expect many scattering events within the material (i.e., the diffusive
approximation should apply well). However, the geometric interpretation
of the mean free path is not as straightforward as for the cross-plane case.
For such a relationship, Holland (1963) suggested:

τ−1
b =

vg

FL , (5.15)

where

L = 2
√

l1l2
π

. (5.16)

The factor F in Eq. (5.16) is a fitting factor that depends, in part, on
the roughness of the surfaces. Surface roughness is important because it
dictates whether the scattering is ‘specular’ (i.e., mirror-like) or ‘diffuse’.
The distinction is crucial because specular reflection will preserve carrier
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momentum in the direction of interest, whereas diffuse reflection will ran-
domize the scattered direction and therefore impede heat flow (Berman
et al., 1953).

The factor F is normally considered a constant that is “adjusted to give
an exact fit at low temperature” (Holland, 1963). However, its possible
dependence on surface roughness deserves some scrutiny because the de-
gree of roughness must be considered in relation to the carrier wavelength.
For example a boundary with a characteristic surface roughness of 100 nm
will appear quite smooth to a carrier with a wavelength of λ = 103 nm,
whereas it will seem very rough to a carrier with a wavelength of λ = 1 nm,
as illustrated in Fig. 5.2. This disparity would imply a wavelength (or fre-
quency, i.e., energy) dependence for this factor, and indeed, a wavelength-
dependent ‘specularity parameter’ can be defined (Yang and Chen, 2004).
This subject remains in the realm of contemporary research, and its various
permutations are not included here for the sake of clarity and brevity.

5.3.2 Defects

A common and analytically accessible scattering type involves point de-
fects such as substitutional impurity atoms, which are foreign atoms that
occupy a regular lattice site. As suggested notionally in Fig. 5.3, these
defects have a small radius of influence (typically about one bond length).
The resultant discontinuity in the lattice properties (i.e., atomic mass and

Fig. 5.2 Boundary scattering illustration showing that the same physical boundary can
appear to be rough (top) to small wavelengths and smooth (bottom) to large wavelengths.
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Fig. 5.3 Schematic of a point defect in a lattice. In this case, the defect is termed
substitutional because it sits at a regular lattice site. The defect alters the local bonds,
thereby creating an extended cross-section of its influence.

spring constants) will cause a wave to alter direction, or scatter. These pro-
cesses tend to preserve the wave’s energy and therefore are termed elastic
scattering events, which are characterized by:

ω = ω′ (elastic scattering), (5.17)

where ω′ is the phonon frequency after the scattering event.
The basic point-defect scattering process can be analyzed using the

conceptual framework shown in Fig. 5.4. The circular tube contains a dis-
tribution of fixed scattering sites, each of diameter d. A carrier proceeding
through a tube of diameter 2d is likely to be scattered by the sites. If the
volumetric concentration of scattering sites is ni throughout the domain,
then the number of scatterers in the tube is niπd2L. The estimated mean-
free path is then expected to be the ratio of the tube length L to the number
of scatterers:

Λi =
L

niπd2L
=

1
niπd2

. (5.18)

In practice, the scattering site diameter is not easily derived. Instead,
the concept of scattering cross-section σ is used to replace the πd2 term
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Fig. 5.4 Schematic of a scattering tube that is aligned with a direction of energy trans-
port. Defects within the tube each have a diameter of d, making the effective diameter
of the scattering tube 2d.

of Eq. (5.18). Then, using the relation τ−1 = vg/Λ, the scattering rate
becomes:

τ−1
i = ασnivg, (5.19)

where α is a constant of the order of 1 that is commonly obtained from
curve-fitting to property data.

As a special case, we consider Rayleigh scattering, which describes point
defect scattering for cases when the defect diameter d is much smaller
than the phonon wavelength λ, i.e., d $ λ. The defining characteristic
of Rayleigh scattering is an inverse fourth-power dependence of the scat-
tering cross section on wavelength:

σ ∼ 1
λ4

. (5.20)

In effect, very long waves more readily pass through these point defects
without scattering than shorter wavelengths (although all must be much
larger than the defect size for the Rayleigh scattering model to apply).

Klemens (1951) showed that this type of scattering for long phonon
waves (for which the Debye approximation is valid, ω ∼ λ−1) produces the
following scattering rate:

τ−1
i,R =

niV 2∆m2

4πv3
gm2

ω4, (5.21)
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where m and V are the mass of the host atom and primitive cell volume,
respectively; ni is the impurity volumetric concentration; and ∆m is the
difference in mass between the impurity and host atoms.

5.4 Phonon-Phonon Scattering Fundamentals

Phonons in a perfectly harmonic crystal will propagate independently, with-
out being influenced by each other for the simple reason the each bond will
act with the same spring constant regardless of the instantaneous posi-
tion of any atom. Therefore, local atomic displacements will not affect the
propagation of other waves by perturbing the effect of the bond-spring.
However, real materials—even ‘perfect’ crystals—possess anharmonicity in
their bonds as shown in Fig. 5.5 that causes wave-wave scattering.

The most common intra-phonon scattering events are the so-called
‘three-phonon’ processes in which either two phonons combine into one,
or one phonon decomposes into two. Of course, many other combinations
involving more than three phonons are possible, but as we will find, the
rules that govern the allowability of such multi-phonon processes are strict,

Fig. 5.5 Bond energy diagram showing the ideal harmonic behavior and the real an-
harmonic shape of the potential energy curve.



September 14, 2013 12:10 World Scientific Book - 9in x 6in B1652 ch05

Carrier Scattering and Transmission 123

Fig. 5.6 Three-phonon scattering processes of types A (2 in, 1 out, with momentum
conservation), B (1 in, 2 out, with momentum conservation), and C (2 in, 1 out, without
momentum conservation).

rendering the three-phonon processes most likely. Figure 5.6 illustrates
three major types of three-phonon scattering processes:

A: Two incoming phonons scattering into a third while conserving energy
and momentum

B: One phonon decaying into two outgoing phonons while conserving
energy and momentum

C: Two incoming phonons scattering into a third while conserving energy
but not momentum

The crucial distinction among these scattering types involves the treat-
ment of momentum. Types A and B, which are termed ‘Normal’ or just
‘N’ processes, both conserve momentum, whereas type C does not. Con-
sequently, N processes do not directly impede heat conduction because
the net carrier momentum in a direction of interest remains unaffected by
scattering.

The C type of scattering is termed an ‘Umklapp’ or simply ‘U’ process2

and refers to a reversal or ‘folding’ of the phonon wavevector (and thus
momentum, )p = ! )K) back into the first Brillouin zone. This reversal is
required because phonons with wavevectors outside the first Brillouin zone

2The term Umklapp is of German origin and means ‘to be folded’.
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have corresponding wavelengths that are simply too small to be supported
by the lattice. The remedy is to translate the wavevector by a harmonic
translation, i.e., the reciprocal lattice vector )G that returns the resultant
to the first Brillouin zone:

)K1 + )K2 = )K3 + )G. (5.22)

A k-space sketch of N (left) and U (right) processes for graphene is shown in
Fig. 5.7. We note that all three-phonon U processes involve two incoming
phonons and one outgoing phonon—akin to the type A Normal process.
A U process comparable to the type B Normal process—decay of a single
incoming phonon—does not exist because such a phonon would not be
allowed outside the first Brillouin zone.

Of course, both types of processes—N and U—must satisfy energy con-
servation:

ω1 + ω2 = ω3 or ω1 = ω2 + ω3. (5.23)

This energy conservation requirement proves to be very restrictive,
allowing only a small set of three-phonon combinations to occur. While
this topic is beyond the scope of the present exposition, we include here the

Fig. 5.7 k-space diagram of graphene showing example N (left) and U (right) phonon
scattering processes.
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Fig. 5.8 k-space of graphene showing the highly restricted modes that satisfy the scat-
tering selection rules for various three-phonon scattering examples. Based on the model
reported by Singh et al. (2011b).

main principles. First, an example of the allowed phonon combinations for
specific types of graphene scattering are indicated in Fig. 5.8, which shows
lines on which energy balance can be achieved within the )K2 k-space for
specific )K1 vectors oriented in the x-direction (Singh et al., 2011b). The re-
sults reveal that only a small subset of k-space can participate in scattering
with the fixed incident phonon.

Because of this complication, exact analytical models for phonon-
phonon scattering are generally not possible. The fully rigorous recourse
is to employ quantum theory with perturbations that account for anhar-
monicity to calculate so-called interaction matrices between incoming and
outgoing phonons through a process known as Fermi’s golden rule. We
exclude the details of this approach from the present text; Kaviany (2008,
Appendix E) provides a full derivation and numerous examples.

Instead, we explain here some phenomenological and qualitative features
of phonon-phonon scattering rate models. The two most important such
principles follow:

• The scattering rate should generally increase with increasing
frequency, because the phonon density of states increases with
frequency.
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• The scattering rate should generally increase with temperature,
because more high-frequency phonons are populated and thus avail-
able to be scattered.

The foregoing principles combine into a general phenomenological scatter-
ing rate model:

τ−1
p−p = BωnT m, (5.24)

where B is a constant, and n and m are typically integers greater than or
equal to one. Klemens (1958) provided an early comprehensive review for
bulk crystals, and the book by Kaviany (2008) contains a thorough analysis
and demarcation of the applicability of various models, particularly for bulk
materials. We refrain here from a repetition of these quality sources, to
which the interested reader is referred.

5.5 The Effective Scattering Rate

Once individual scattering models have been established, they need to be
combined into an effective scattering term. Intuition might suggest that an
averaging process could be defined, but the term ‘mean’ in ‘mean free path’
suggests that an averaging process has already been applied for individual
scattering processes. Instead, an additive approach is commonly used that
sums the various scattering rates through what is termed the ‘relaxation
time approximation’ (RTA) when used in the context of the Boltzmann
transport equation (BTE) and its derivatives (Joshi and Majumdar, 1993).
The summation is performed using the so-called Matthiessen’s Rule:

τ−1
eff =

∑

scat. proc. j

τ−1
j . (5.25)

However, some important caveats apply. First, the foregoing ‘rule’ as-
sumes that one type of scattering process in the summation does not affect
any of the others. In other words, a defect scattering process does not make
a boundary scattering event more likely or less likely to occur. Second, only
the scattering types that impede heat flow should be included in the calcu-
lation of τ−1

eff . To understand why, recall the earlier expression for thermal
conductivity from kinetic theory:

κ =
1
3
vgΛeffcv =

1
3
v2

gτeffcv. (5.26)
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Consequently, the N processes for phonon-phonon scattering discussed in
Section 5.4 should not be included in Matthiessen’s rule. However, they do
affect U processes by increasing the number of populated high-K phonons,
which in turn are more likely to participate in U processes. Therefore, even
though N processes do not directly impede heat flow, they are important
because they ‘feed’ U processes. Callaway (1959) provides a useful model
for this N/U interaction, and Ni and Murthy (2012) demonstrate how it
can be applied to contemporary research.

As a simple example, we consider a 1D material (M = 1) with a constant
defect scattering rate and a power-law U process scattering rate:

τ−1
i = 1010 s−1, (5.27)

τ−1
U,p−p =

(
10−17 s/K

)
ω2T. (5.28)

The effective scattering rate becomes:

τ−1
eff = 1010 s−1 +

(
10−17 s/K

)
ω2T. (5.29)

Figure 5.9 shows effective scattering rates as a function of normal-
ized frequency [χ = !ω/(kBT )] for three different temperatures. For all

Fig. 5.9 Effective scattering rates as a function of normalized frequency [χ = !ω/(kBT )]
for three different temperatures, using Matthiessen’s rule for the example of combined
defect and U process scattering.
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temperatures the low-frequency scattering rate is fixed by the defect scat-
tering term. However, for the higher temperatures, the U process scattering
rate steadily overtakes the defect rate as frequency increases, leading to a
large increase that dominates the effective scattering rate for almost all
frequencies. Only at the lowest temperature is defect scattering significant.

The effect of temperature can be further understood through the vari-
ation of thermal conductivity as shown in Fig. 5.10 (which assumes a con-
stant group velocity of vg = 1000 m/s for simplicity). The thermal conduc-
tivity is calculated using Eq. (5.7):

κ =
1
2π

∫ ∞

0
Λ(ω)MdD(ω)!ω∂fo

BE

∂T
dω

(1D) =
1
2π

∫ ∞

0

vg

τ−1(ω)
!ω∂fo

BE

∂T
dω. (5.30)

In Fig. 5.10 the thermal conductivity for temperatures below 10 K inherits
the characteristic temperature dependence of the specific heat (cv ∼ T 1 for

Fig. 5.10 Thermal conductivity of a 1D material as a function of temperature for the
example of combined defect and U process scattering. The region below T = 10 K is
dominated by defect scattering. Above 10 K, U scattering and the plateauing of specific
heat with temperature become prominent.
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this 1D example). Thereafter, a transition occurs in which the temperature
dependence becomes dominated by U process scattering (τ−1

U ∼ T ) while
the specific heat begins to asymptote toward a constant value (according
to the Law of Dulong and Petit). As temperature increases further, the
scattering rate continues to increase, resulting is a pronounced decrease
in thermal conductivity. This simple example illustrates qualitatively the
typical regimes of a material whose thermal conductivity is dominated by
phonons:

• Increasing thermal conductivity with increasing cryogenic temper-
atures dominated by the material’s specific heat.

• A range of transition temperatures in which the increase in specific
heat begins to moderate while phonon-phonon scattering becomes
prevalent. The peak thermal conductivity occurs in this region.

• A decreasing thermal conductivity at high temperatures as specific
heat becomes constant while the phonon-phonon scattering rate
continues to increase.

5.6 Interfacial Transmission

Individual nanomaterials can exhibit extreme thermal properties—both
high and low magnitudes. In applications such as thermal insulation or
thermoelectrics, the objective is to suppress heat conduction, and a com-
mon strategy is to introduce numerous heterogeneous material interfaces
that reflect thermal energy carriers. At the other extreme, the engineer-
ing objective is typically to translate the outstanding thermal properties
of individual nanoscale elements to more practical human length scales by
connecting many (typically billions) such elements to each other and to
the ‘bulk’ contacts of the real world. Achieving such a circumstance is,
however, made very difficult because of the many local interfaces whose
presence often mutes the very properties for which the nanoscale elements
were chosen. In both cases—high and low property extremes—an under-
standing of heat flow across interfaces is essential.

Interfacial heat flow is often quantified by its thermal boundary (inter-
face) resistance3 or its inverse, the thermal boundary conductance. Using

3For solid-fluid interfaces, the resulting resistance is often called the Kapitza resistance
Kapitza (1941).
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our prior framework, the expression for thermal boundary resistance is:

Rb =
T1 − T2

Qph

=
T1 − T2∑

p

1
2π

∫ ∞
0 !ωM(ω)T (ω) [fo

BE(T1) − fo
BE(T2)]dω

(5.31)

≈
[
∑

p

1
2π

∫ ∞

0
!ωM(ω)T (ω)

∂fo
BE

∂T
dω

]−1

, (5.32)

where the latter approximation derives from ∆T → 0. The area-normalized
resistance becomes:

R
′′

b = Rb × ‘area’ ≈
[
∑

p

1
2π

∫ ∞

0
!ωMdD(ω)T (ω)

∂fo
BE

∂T
dω

]−1

. (5.33)

The challenge is therefore to evaluate the transmission function T (ω), as
developed in the following subsections for smooth (acoustic mismatch) and
rough (diffuse mismatch) interfaces.

5.6.1 Acoustic Mismatch

We begin the study of interfaces with the continuum version the 1D atomic
chain. Consider a two-segment string that is stretched under a fixed ten-
sion Te as shown in Fig. 5.11. A wavefront of arbitrary displacement
form f1 is incident rightward from string 1 on the interface, and the wave
then partially reflects (g displacement) and transmits into string 2 (f2 dis-
placement). Basic acoustic theory (French, 1971) reveals that the acoustic
velocity in a string can be expressed as:

va =

√
Te

µ
, (5.34)

where µ is the mass density of the string (mass per unit length).
The transverse displacements (y1 and y2) in each string can be expressed

as:

y1(x, t) = f1

(
t − x

v1

)
+ g

(
t +

x

v1

)
,

y2(x, t) = f2

(
t − x

v2

)
, (5.35)



September 14, 2013 12:10 World Scientific Book - 9in x 6in B1652 ch05

Carrier Scattering and Transmission 131

Fig. 5.11 Reflection and transmission of a wave on strings under tension. The wave is
partially reflected and transmitted at the interface, where a discontinuity in mass density
µ exists.

with boundary conditions:

y1(0, t) = y2(0, t), (5.36)

∂y1

∂x
(0, t) =

∂y2

∂x
(0, t). (5.37)

Using the interface conditions (x = 0) to solve for f2 and g in terms of f1

reveals:

f2(t) =
2v2

v2 + v1
f1(t) (5.38)

g(t) =
v2 − v1

v2 + v1
f1(t) (5.39)

From the foregoing relations, we can solve for the reflected displacement in
terms of the transmitted displacement:

g(t) =
v2 − v1

2v2
f2(t). (5.40)

These relations lead to the following intuitive observations:

• If v1 = v2, then nothing is reflected (all transmitted)
• If v2 = 0 (infinite mass), then all is reflected
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To this point, we have considered displacements (y, f, g) and velocities
(va), but our prime focus is energy, specifically the rate of energy flow
(French, 1971):

P =
1
2
µy2

maxvaω
2, (5.41)

where ymax is the peak displacement, and ω is the frequency of oscillation.

The ratio of power reflected at the interface to that incident becomes:

Pg

Pf1
=

(
g

f1

)2

=
(

v2 − v1

v2 + v1

)2

. (5.42)

Instead of velocities, the concept of acoustic impedance (Z) is often
used:

Z =
Te

va
=

√
Teµ = µva. (5.43)

Then, the normal-direction interfacial energy transmittance from string 1
to string 2 (t12) becomes:

t12 = 1 −
(

g

f1

)2

= 1 −
(

Z1 − Z2

Z1 + Z2

)2

=
4Z1Z2

(Z1 + Z2)
2 . (5.44)

Expressed in terms of velocity, the transmittance is:

t12 =
4v1v2

(v1 + v2)2
. (5.45)

Note that the reverse transmittance t21 from string 2 to string 1 is mathe-
matically identical to t12 due to the symmetry of the result. This model is
called the Acoustic Mismatch Model (AMM) (Little, 1959).

We turn our attention back to the contact-device-contact arrangement
to understand the effects of an internal interface within the device as shown
in Fig. 5.12. Our prior derivations presumed a uniform number of modes
(M) in the device:

Qph =
1
2π

∫ ∞

0
M(ω)T (ω)!ω [fo

BE(T1) − fo
BE(T2)] dω. (5.46)

What happens if M changes from one side of the device to the other? For
such situations, we must use the concept of interfacial energy transmittance
that is specific to a given direction (e.g., t12 in Eq. (5.44)).



September 14, 2013 12:10 World Scientific Book - 9in x 6in B1652 ch05

Carrier Scattering and Transmission 133

Fig. 5.12 Schematic of a contact-device-contact arrangement in which the number of
modes changes at an interface within the device.

The form of Eq. (5.54) that allows for mode discontinuity and direction-
specific transmission is:

Qph =
1
2π

∫ ∞

0
!ω [M1(ω)t12(ω)fo

BE(T1) − M2(ω)t21(ω)fo
BE(T2)] dω.

(5.47)
As a reminder, the number of modes is:

Mi(ω) = ‘area’× π 〈vg,x〉DdD(ω), (5.48)

where i denotes the side of the device. The principle of detailed balance
requires that the integral in Eq. (5.47) must be zero when the two contact
temperatures are the same, T1 = T2. Consequently, the number of modes
and transmittances must be related by:

M1(ω)t12(ω) = M2(ω)t21(ω) = Mi(ω)Ti(ω). (5.49)

This result indicates that the number of modes and transmittance
should be thought of as a collective entity for problems in which the number
of modes changes across an interface. Moreover, the transmittance itself
can depend on the direction of the carrier, in which case the spatial aver-
aging used previously to define the number of modes must be revisited (see
Eqs. (4.3)–(4.6) and Eqs. (4.23)–(4.25)).

Extension of the AMM beyond the 1D analysis above provides an exam-
ple for the process of directional averaging. The multi-dimensional version
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of the AMM is Little (1959):

t12(θ1,ω) = t21(θ2,ω) =
4Z2
Z1

· cos θ2
cos θ1(

Z2
Z1

+ cos θ2
cos θ1

)2 , (5.50)

where θ1 and θ2 are the incident and transmitted (refracted) polar angles, as
shown in Fig. 5.13. Any frequency dependence in the transmittances would
be manifested in the velocity terms that comprise the acoustic impedances
and the refracted angle θ2, although most often the Debye approximation
is used in conjunction with the AMM. The incident and transmitted angles
are related by Snell’s law:

sin θ2 =
vg2

vg1
sin θ1. (5.51)

The directional dependence of txy necessitates a revisiting of the k-space
integral expression for heat flow rate. The 3D version can be expressed as:

Qph =
‘area’
8π3

∫ 2π

0

∫ π
2

0

∫ ∞

0
!ω

[
t12(θ,ω)vg1 cos θ sin θfo

BE(T1)

−t21(θ,ω)vg2 cos θ sin θfo
BE(T2)

]
k2dkdθdψ

=
‘area’π

2π

∫ π
2

0

∫ ∞

0
!ω

[
t12(θ,ω)vg1 cos θ sin θD1,3D(ω)fo

BE(T1)

−t21(θ,ω)vg2 cos θ sin θD2,3D(ω)fo
BE(T2)

]
dωdθ,

(5.52)

where Di,3D(ω) is the 3D phonon density of states for side i.
The principle of detailed balance requires that the directional (θ) inte-

gral over the bracketed term in Eq. (5.52) must be zero when T1 = T2 (i.e.,
when fo

BE(T1) = fo
BE(T2)). Therefore, the following relation must hold:

‘area’π

[∫ π
2

0
t12(θ,ω)vg1 cos θ sin θdθ

]
D1,3D(ω)

= ‘area’π

[∫ π
2

0
t21(θ,ω)vg2 cos θ sin θdθ

]
D2,3D(ω)

≡ T (ω), (5.53)

where the final equivalence defines a directionally averaged product of the
number of modes and transmission function. This function can be used in



September 14, 2013 12:10 World Scientific Book - 9in x 6in B1652 ch05

Carrier Scattering and Transmission 135

Fig. 5.13 Multi-dimensional reflection and refraction of phonons at an interface under
acoustic mismatch. The refraction follows Snell’s law.

the general expression for heat flow rate as:

Qph =
1
2π

∫ ∞

0
T (ω)!ω [fo

BE(T1) − fo
BE(T2)] dω

Qph =
1
2π

∫ ∞

0
Mi(ω)TAMM,i(ω)!ω [fo

BE(T1) − fo
BE(T2)] dω, (5.54)

where the last equality involves a definition of an effective transmission
function for the AMM:

TAMM,i(ω) ≡ T (ω)
Mi(ω)

. (5.55)

Here, the denominator is the previously defined ‘number of modes’ (see
Eq. (5.48)).

The foregoing development reveals a subtle but important observation—
namely, that the density of states of only one side of the interface needs
to be known in order to solve for the overall transport rate. This find-
ing is also observable from Eq. (5.49) for problems with a difference in
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the number of modes but directionally independent transmittance and is a
general consequence of the principle of detailed balance.

The actual function T (ω) for the AMM and other models is complicated
because it involves a combination of the directional dependence of Eq. (5.50)
and Snell’s law (Eq. (5.51)). Little (1959) and Cheeke (1976) used a related
functional:4

Γ(ω) =
∫ π

2

0
t12(θ,ω) cos θ sin θdθ =

T (ω)
‘area’πD1,3Dvg1

=
T (ω)
2M1

=
1
2
TAMM,1(ω), (5.56)

where the frequency dependence of the transmission is retained for gener-
ality. We note that any frequency dependence of the foregoing expression
would be contained in the transmittance (t12). However, under the Debye
approximation, the velocities are assumed constant, and this frequency de-
pendence disappears. Tabulated values of Γ for the AMM under the Debye
approximation have been provided by Cheeke et al. (1976) for parameter-
ized acoustic impedances. Instead of a plot of Γ, we include here a contour
graph of the average AMM transmission function TAMM in Fig. 5.14.

5.6.2 Diffuse Mismatch

A fundamentally different but also commonly used interface transmission
theory is called the Diffuse Mismatch Model (DMM). The term ‘diffuse’
implies randomness (or something ‘spread out’), and in diffuse interface
scattering a phonon loses the memory of its origin and its type (branch).
In this sense, the DMM can be considered the opposite extreme of the
AMM, which generally presumes a retention of phonon coherence. This
model applies particularly well to interfaces that are rough in comparison
to the carrier wavelength (cf., Fig. 5.2). A carrier moving away from a
diffuse interface ‘forgets’ its original location and branch, and as a result,
the transmittance into a particular side is equivalent to reflectance from
that side back into itself:

t12 = r21 = 1 − t21, (5.57)

4Note that their term α1(θ) is equivalent to t12(θ) used here.
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Fig. 5.14 Average AMM transmission coefficient for different group velocities and den-
sity ratios.

where the second equality derives from an energy balance (a carrier must
be either transmitted or reflected–nothing is absorbed by assumption). The
transmittances and reflectances are shown schematically in Fig. 5.15.

Because a scattered phonon can proceed, by assumption, into any
branch that is active at its frequency (energy), the summation over
branches5 must be included in the statement of detailed balance that is
applicable to the DMM:

∑

p

M1(ω)t12(ω) =
∑

p

M2(ω)t21(ω) =
∑

p

M2(ω) [1 − t12(ω)]. (5.58)

The transmittance does not depend on branch, and therefore, it can be
solved as:

t12(ω) =

∑
p

M2(ω)
∑
p

M1(ω) +
∑
p

M2(ω)
. (5.59)

5We have avoided including the branch summations where it is not essential in prior
derivations, for the sake of clarity.
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Fig. 5.15 Reflection and transmission at a material interface. If the process is diffuse,
then tij = rji.

The foregoing expression gives the important result that the DMM
transmittance is proportional to the fraction of total modes (sides 1 and 2)
available on the opposite side of the interface.

M1(ω)T1(ω) = M1(ω)

∑
p

M2(ω)
∑
p

M1(ω) +
∑
p

M2(ω)
. (5.60)

5.7 Thermionic Electron Emission

As stated previously, electron transport is also critically important to heat
conduction in bulk metals. Further, coupled electrical-thermal transport is
dispositive in determining the performance of many technologically impor-
tant devices, such as solid-state transistors and thermoelectric materials.
Much of the foundational theory associated with the transport of heat by
electrons can be obtained from other books in this series by Datta (2012),
and Lundstrom and Jeong (2013), particularly when viewed through analo-
gies such as the Wiedemann-Franz law. Here, we focus on the topic of
thermionic electron emission through the perspective of modes and trans-
mission developed above. Thermionic transport, while perhaps less com-
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mon than the ubiquitous transistor, plays a critical role in applications
such as electron sources for imaging instruments (e.g., scanning electron
microscopes) and in both vacuum (Hatsopoulos and Gyftopoulos, 1973)
and solid-state (Shakouri and Bowers, 1997) thermal-to-electrical energy
conversion processes.

We begin with a general description of electron emission processes.
Figure 5.16 illustrates two possible electron emission pathways from a solid
metal into vacuum. Electrons can emit over potential barriers (thermionic
emission), or they can tunnel through them (field emission). Field emission
involves quantum tunneling through a triangular potential barrier formed
by the application of an electric field between the two electrodes (i.e., cath-
ode and anode). Fowler and Nordheim (1928) developed the first theory

Fig. 5.16 Schematic of thermionic and field electron emission. The power supply creates
an electric field through which field-emitted electrons tunnel. Thermionic electrons emit
over the energy barrier entirely.
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for field emission, for which the tunneling (transmission) probability is pro-
portional to e−δ(E), where δ(E) is the local thickness of the potential at a
particular energy E. Here, we will focus on the process of thermionic emis-
sion, which applies to electrons with energies above the surface potential
barrier, known as the work function φ.

The general mode-transmission form of the electronic heat flux (cf.,
Eq. (4.12)) is:

JQ,el =
1
π!

∫ ∞

0
MdD(E)(E − µ)T (E) [fo

FD(T1) − fo
FD(T2)] dE, (5.61)

where, now, the mode density MdD corresponds to electrons. The primary
interest here is to derive the electrical current flux (usually termed ‘current
density’), which can be obtained by replacing the energy term (E − µ) in
Eq. (5.61) with the elementary electron charge q:

J =
q

π!

∫ ∞

0
MdD(E)T (E) [fo

FD(T1) − fo
FD(T2)]dE. (5.62)

Thermionic current, by definition, is driven by thermal energy, and the
corresponding schematic is shown in Fig. 5.17. We will assume for brevity
that the right side reservoir is so cold that no electrons emit from right to
left. Consequently, the thermionic current density can be approximated as:

J ≈ q

π!

∫ ∞

0
MdD(E)T (E)fo

FD(T1)dE. (5.63)

One complication of thermionic analysis involves the directional depen-
dence of the transmittance, similar to the analysis for phonon interface
transmission with acoustic mismatch theory. Consequently, the analysis

Fig. 5.17 Schematic of a thermionic contact-device-contact arrangement. Here, the
device is vacuum, and the same potential barrier exists at each contact interface.
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must begin with k-space integrals, as did the energy transport analysis
(e.g., see Eqs. (4.5) and (4.6) for 2D and 3D, respectively). The general
current density in 2D can be expressed as:

J = 2q

∫ π/2

−π/2

∫ ∞

0

vg cos θ
4π2

t12(k, θ)fo
FD(T1)kdkdθ, (5.64)

where t12 is the directionally dependent transmittance. Before proceed-
ing further with thermionic emission, we first analyze the ‘ideal’ result for
t12 = 1:

Jideal =
q

π2

∫ ∞

0
vgf

o
FD(T1)kdk =

q

2π

∫ ∞

0

[
2
π

vg

]
fo

FD(T1)kdk

=
qme

2π!2

∫ ∞

0
〈vgx〉 fo

FD(T1)dE

=
q

π!

∫ ∞

0
M2D(E)fo

FD(T1)dE, (5.65)

where the following expressions for 2D density of states and mode density
from Chapter 4 have been used with unity valley degeneracy (gv = 1) and
the conduction band edge as the zero energy datum (Ec = 0):

D2D(E) =
me

π!2
, (5.66)

M2D(E) =
π!
2

〈vgx〉D2D(E). (5.67)

Equation (5.65) represents the total flux of electrons approaching the
potential barrier and is related to the ‘supply function’ that has been used
historically in treatments of thermionic theory (Young, 1959).

The directionality of thermionic transmission derives from the nature
of the work function φ, which is an energy barrier that is perpendicular
to the the material’s surface. Consequently, an electron must possess suffi-
cient energy associated with the surface normal direction in order to emit.
Assuming as usual a parabolic free-electron energy band, the transmittance
is a simple step function that depends on the magnitude of the wavevector
(k) and its angle θ from the surface normal:6

t12(k, θ) = H

[
!2k2

2me
cos2θ − (µ + φ)

]
, (5.68)

6Note that this transmission function neglects quantum wave effects. The semiclassical
models here for thermionic emission are generally quite accurate as compared to exact
quantum models (Jensen et al., 2002).
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where H is the Heaviside function. Letting x ≡ cos2 θ, the expression
becomes:

J = 2q

∫ 0

1

∫ ∞

0

−vg

4π2
√

1 − x
H

[
!2k2

2me
x − (µ + φ)

]
fo

FD(T1)kdkdx, (5.69)

where the factor of 2 and choice of integration limits derive from the sym-
metry of Eq. (5.68) with respect to θ. The Heaviside function can be used
to redefine the integration limits, and the (-) sign reverses the direction of
integration in x:

J =
q

2π2

∫ 1

µ+φ
E(k)

∫ ∞

0

vg√
1 − x

H [E(k) − (µ + φ)] fo
FD(T1)kdkdx. (5.70)

The foregoing integrand essentially requires that E(k) > (µ + φ) through
the Heaviside function, and if this condition is satisfied, the integral is per-
formed for values of cos2 θ between (µ+φ)/E(k) and unity, corresponding to
conditions of sufficient energy associated with the surface normal direction
for emission to occur.

The following integral identity enables analytic evaluation of the current
density:

∫ b

a

dx√
1 − x

= −2
√

1 − x
∣∣b
a
. (5.71)

The current density becomes:

J =
q

π2

∫ ∞

0
vg

√

1 − Evac

E(k)
H [E(k) − Evac] fo

FD(T1)kdk, (5.72)

where the term Evac = µ + φ represents the vacuum energy level and is
used hereafter for brevity.

Comparison of Eq. (5.72) with the ideal case of Eq. (5.65) reveals that
the transmission function for this 2D problem must be:

T2D(E) =
√

1 − Evac

E
H [E − Evac] . (5.73)

The mode density form of the 2D thermionic current density becomes:

J =
q

π!

∫ ∞

0
M2D(E)T2D(E)fo

FD(T1)dE
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=
q

π!

∫ ∞

0
M2D(E)

√
1 − Evac

E
H [E − (Evac)] fo

FD(T1)dE

=
q

π!

∫ ∞

Evac

M2D(E)
√

1 − Evac

E
fo

FD(T1)dE. (5.74)

The foregoing integral is generally not amenable to analytic evaluation;
however, by recognizing that the work function φ is typically much larger
than the thermal energy kBT , the distribution function can be approxi-
mated as fo

FD ≈ exp(−(E − µ)/kBT ), which is the Maxwell-Boltzmann
distribution. The thermionic current density then becomes:

J =
q
√

2me

(π!)2
(kBT )3/2e

−φ
kBT

∫ ∞

0

√
ye−ydy, (5.75)

where y = (E − Evac)/(kBT ). The integral evaluates exactly as
√
π/2.

Consequently, the expression for 2D thermionic current density becomes:

J =
q

!2

√
me

2

(
kBT

π

)3/2

e
−φ

kBT

=
[
0.090

A
mK3/2

]
T 3/2e

−φ
kB T . (5.76)

Similar analyses for 1D and 3D emitters produces the following, general
result for the thermionic transmission function:

T (E) =
(

1 − Evac

E

) d−1
2

H [E − Evac] , (5.77)

where d is the problem dimensionality. The resulting general integral for
thermionic current density is:

J =
q

π!

∫ ∞

0
MdD(E)

(
1 − Evac

E

) d−1
2

H [E − Evac] fo
FD(T1)dE . (5.78)

For a 3D emitter, and using the Maxwell-Boltzmann approximation for the
distribution function, the result is the well-known Richardson-Dushman
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equation (Murphy and Good, 1956):

J =
∫ ∞

0

meq

2π2!3
E

(
1 − Evac

E

)
H [E − Evac]

1 + exp
(

E−µ
kBT1

) dE

≈ AT 2
1 exp

(
−φ

kBT1

)
, (5.79)

where A =
meqk2

B

2π2!3
= 120 A/cm2K2 (5.80)

The transmission functions for the three dimensionalities are shown in
Fig. 5.18. The trends reveal that the primary effect of increased dimen-
sionality is to decrease the transmission at a given total energy (E) be-
cause higher dimensionality provides more degrees of freedom in directions
parallel to the surface and its energy barrier. Of course, the 1D case sim-
ply produces a step function because the direction of emission is the only
possible direction, by definition.

A common method of evaluating an emitter material’s work function
is to measure its electron energy distribution (EED), which is simply the

Fig. 5.18 Thermionic transmission as a function of energy for 1D, 2D, and 3D emitters.
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spectral current density (the integrand of Eq. (5.78)):

dJ

dE
=

q

π!MdD(E)
(

1 − Evac

E

) d−1
2

H [E − Evac] fo
FD(T1). (5.81)

Figure 5.19 contains a thermionic EED for the (100) face of single-crystal
tungsten at 850◦C. The 3D EED peaks at an energy that is kBT above the
vacuum energy Evac, while the 2D EED peak occurs at 1

2kBT above the
vacuum level. The reason for such a simple outcome is that each degree of
freedom not directed normal to the surface will add an average energy of
1
2kBT according to the equipartition theorem (Laurendeau, 2005). For the
conditions of Fig. 5.19, the work function for this 3D emitter is 4.56 eV. An
EED can also serve to measure the effective temperature of the emitting
electrons. For 3D emitters, the full-width half-maximum (FWHM, i.e., the
width of the distribution at half of the peak spectral current density) is
2.45 kBT ; for 2D emitters, it is 1.80 kBT .
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Fig. 5.19 Thermionic electron energy distribution from bulk, single crystal tungsten
(100). The data were recorded at an emitter temperature of 850◦C.
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5.8 Conclusion

This final chapter has introduced a broad diversity of important topics nec-
essary to understand thermally driven transport, from a variety of ‘internal’
scattering mechanisms to interfacial behavior. Each main topic within this
chapter has attracted its own cadre of experts, and one could spend an
entire career studying any of them. Of course, most learners tend to be
generalists, at least initially, and this part of the audience should, having
reached the end of the text, be comfortable in progressing deeper into any
or all of these interesting areas.

One rather fortuitous outcome of this chapter is the demonstrated co-
gency and versatility of the mode-transmission Landauer formulation:

• Simple, energy-independent scattering can be easily expressed in
transmission form intuitively as the ratio of the mean free path and
device length, and at the same time, the ballistic-diffusive transi-
tion can be handled through a minor modification to the transmis-
sion function.

• More complicated scattering mechanisms, such as three-phonon
processes, generally involve parameterized energy (frequency) and
temperature dependencies that require numerical solutions to the
Landauer integral, but these can be calculated quite readily with
contemporary software.

• Interfaces tend to require additional effort because the transmission
function becomes directionally dependent for both phonons and
electrons. However, the mode-transmission product remains the
primary entity to compute.

• Moreover, the treatment of diffuse interfaces is particularly
straightforward—the transmission depends simply on the ratio of
modes on one side to the total modes on both sides.

• Finally, even thermally driven electrical current—thermionic
emission—is intuitively described by the mode-transmission for-
mulation.

This approach seems to differ, at least at first, from more common
expositions that tend to employ a variation of the Boltzmann transport
equation. However, the final results are the same, while at least concep-
tually, the mode-transmission formulation offers some advantages in ex-
plaining the underlying physics. In the end, the Landauer formulation for
real scattering and transmission processes proves to be extremely versatile
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and effectively unifies the theoretical analysis of these rather complicated
and diverse processes. The approach also handles different dimensional
spaces in a straightforward and consistent manner. Those who find utility
in this approach are encouraged to develop it further as they move past the
foundational concepts presented herein to the many exciting contemporary
research topics associated with thermal energy at the nanoscale.
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Example Problems

Problem 5.1: Thermal conductivity of silicon

Calculate the thermal conductivity of silicon at 300 K using the rudi-
mentary model for transmission given by T = Λ/(Λ + L). Assume an
energy-independent mean free path of Λ = 200 nm. Also assume that
the three acoustic branches of silicon are replaced by a single branch
with a uniform group velocity of 6400 m/s with a Debye temperature of
645 K. Plot the thermal conductivity as a function of length from 10 nm
to 20 µm. Calculate the length beyond which the thermal conductivity
changes by less than 2%.

Solution

Thermal conductivity κ is obtained from the conductance GQ using
the formula κ = GQL/‘area’:

κ =
L

‘area’
1
2π

∫ ∞

0
‘area’MdD(ω)!ω Λ

Λ + L

∂fo
BE

∂T
dω. (5.82)

In three dimensions and under the Debye approximation, the number
of modes is given by:

M3D(ω) = π〈vg〉D(ω) =
ω2

4πv2
g
. (5.83)

Substituting into Eq. (5.82), we obtain:

κ =
LΛ

Λ + L

k4
BT 3

8π2v2
g!3

∫ θD/T

0

χ4eχ

(eχ − 1)2
dχ, (5.84)

where χ = !ω/kBT is the non-dimensional frequency and θD =
!ωD/kB is the Debye temperature. Substituting T = 300 K, Λ = 200
nm, θD = 645 K, vg = 6400 m/s, we obtain:

κ = 146.02
L

Λ + L
W/m K. (5.85)

Figure 5.20 shows the length dependence of thermal conductivity. The
thermal conductivity is within 2% of its bulk value (L → ∞) beyond a
length of approximately 9.5 µm.
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Fig. 5.20 Variation of thermal conductivity as a function of length.

Problem 5.2: Thermal interface resistance

An experimentalist measures the cryogenic thermal boundary resis-
tance between Si (ρSi = 2330 kg/m3) and aluminum (ρAl = 2700
kg/m3) at a temperature of T = 10 K to be R′′

b = 4.5± 0.3 mm2K/W.
We wish to determine the type of interface model that most accu-
rately describes this behavior. To simplify the analysis, first neglect
all effects of electronic transport. Also, assume that the longitudinal
phonon mode dominates the transport (i.e., neglect all effects of trans-
verse modes). The longitudinal phonon group velocities in silicon and
aluminum are: vg,Si = 6400 m/s and vg,Al = 5600 m/s. With these
assumptions, answer the following:

(a) Determine the transmission function TAMM using the acoustic
mismatch model by averaging t12 over all possible incidence an-
gles. Here the subscript 1 represents Si and 2 represents Al.
Hint: The contour plot in Figure 5.21 shows the angular integral
2

∫ π/2
0 t12 cos θ sin θdθ for different values of density and velocity

ratio.
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(b) Determine the transmission function TDMM from the diffuse mis-
match model.

(c) Determine the thermal boundary resistance using the transmission
coeffcients calculated from AMM and DMM. Which model best
matches the experimental data?

Solution

(a) The transmittance t12 from AMM is given by:

t12 =
4Z2

Z1

cos θ2
cos θ1(

Z2
Z1

+ cos θ2
cos θ1

)2 , (5.86)

where Z1 and Z2 are the acoustic impedances of silicon and alu-
minum respectively. θ1 and θ2 are the angles of incidence (Si side)
and refraction (Al side) respectively. θ1 and θ2 are related through
Snell’s law of refraction:

sin θ1
sin θ2

=
vg,1

vg,2
. (5.87)

The overall transmission function is an average of Eq. (5.86) over
all possible angles of incidence (0 to π/2). Thus the average trans-
mission coefficient TAMM is given by:

TAMM =
T
M

= 2
∫ π/2

0
t12 sin θ1 cos θ1dθ1, (5.88)

where the factor sin θ1 in the integrand comes from the integra-
tion over all solid angles, and the factor cos θ1 comes from the
normal component of group velocity, i.e., only the component of
group velocity normal to the interface contributes to energy trans-
fer across the interface. Figure 5.21 shows the average transmission
function (obtained by evaluating the integral in Eq. (5.88) numer-
ically) for different values of group velocity and density ratios. For
vg,2/vg,1 = 5600/6400 ≈ 0.9 and ρ2/ρ1 = 2700/2330 ≈ 1.2, the
average transmission function TAMM = 0.96.

(b) The transmission function from the diffuse mismatch model TDMM

is given by:

TDMM =
1/v2

g,2

1/v2
g,1 + 1/v2

g,2

. (5.89)
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Note that the above expression is valid only under the Debye ap-
proximation. Substituting vg,1 = 6400 m/s and vg,2 = 5600 m/s,
we obtain TDMM = 0.56.

(c) The area normalized interface resistance R′′
b is given by:

R′′
b =

[
1
2π

∫ ∞

0
!ωM3D(ω)T (ω)

∂fo
BE

∂T
dω

]−1

, (5.90)

where we have dropped the summation over phonon polarization
since we are considering only the longitudinal branch in this prob-
lem. Making a change of variable given by χ = !ω/kBT , we obtain:

R′′
b =

[
k4

BT 3T
8π2v2

g,Si!3

∫ θD,Si/T

0

χ4eχ

(eχ − 1)2
dχ

]−1

. (5.91)

For small temperatures in comparison to the Debye temperature,
the upper limit of the integral can be approximated as infinity, and
the integral evaluates to 4π4/15. Thus for low temperatures, the
thermal boundary resistance R′′

b is given by:

R′′
b =

[
π2

30
k4

B

!3v2
g,Si

T
]−1

T−3. (5.92)

From the above equation, we obtain the following values for R′′
b .

R′′
b (TAMM , 10 K) = 4.18 × 10−6 m2K/W (5.93)

= 4.18 mm2K/W (5.94)

R′′
b (TDMM , 10 K) = 7.18 × 10−6 m2K/W (5.95)

= 7.18 mm2K/W (5.96)

From the above values, the AMM prediction is closer to experi-
mental results.
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Fig. 5.21 Angular average of the transmission coefficient from AMM for different group
velocities and density ratios.

Problem 5.3: Thermionic emission

An electron emission material has a chemical potential µ = 5 eV and
a work function φ = 2.36 eV.

(a) Calculate the current flux at a cathode temperature of 400 K.
(b) Calculate the electron energy at which the thermionic electron en-

ergy distribution is a maximum.
(c) Make a qualitative plot of the transmission function and the elec-

tron energy distribution as a function of energy.

Solution

(a) The current flux is obtained from the Richardson-Dushman equa-
tion:

J3D =
mk2

Bq

2π2!3
T 2

1 exp
−φ

kBT1
= AT 2

1 exp
−φ

kBT1
. (5.97)
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Substituting T1 = 400 K and φ = 2.36 eV, A = 1.2× 106 A/m2K2,
we obtain J3D = 3.87 × 10−19 A/m2.

(b) The maximum in the thermionic electron energy distribution
(TEED) occurs at an energy of Emax = µ + φ + kBT1 = 7.39
eV.

(c) Figure 5.22 shows a plot of TEED and the transmission function
as a function of electron energy.
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Fig. 5.22 Thermionic electron energy distribution and transmission function.
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Problem 5.4: Thermal conductivity of confined
nanostructures

Confining the dimensions of a bulk material via nanostructuring can
produce a drastic reduction in the thermal conductivity. Sketches of
three silicon nanostructures are drawn in Figure 5.23 (not to scale).
The confined dimensions are indicated. Assume the average group ve-
locity of LA and TA modes of silicon as vg,Si = 5200 m/s. The Debye
approximation can be invoked for these acoustic branches. Dominant
scattering phenomena that occur in such nanostructures include tem-
perature independent boundary scattering τ−1

b , Rayleigh-type (Kle-
mens model) impurity scattering τ−1

i , and temperature dependent
Umklapp scattering τ−1

U,p−p:

τ−1
b =

vg√
l1l2

, τ−1
i = Aω4, τ−1

U,p−p = BTω2e−C/T , (5.98)

where the constants A, B and C are given in Table 5.1.

(a) Calculate the thermal conductivity of the three nanostructures
shown in Figure 5.23 at T = 300 K. Include the aforementioned
scattering models. You may need to use a numerical solver (e.g.,
WolframAlpha) to evaluate the integral.

(b) The online Chapter 5 CDF7 tool plots thermal conductivity of sil-
icon and germanium nanostructures as a function of temperature.
The model incorporates the scattering phenomenon discussed in
part (a) of the problem. The CDF allows the user to choose the
material, Si or Ge. The tool also allows the user to vary the bound-
ary size from 10 nm to 200 nm. This range is chosen for accurate
applicability of the above scattering phenomenon. Observe the
change in thermal conductivity as the boundary size changes. Pro-
vide a physical explanation for the above trend. Also, assess the
temperature dependence of thermal conductivity.

Solution

(a) Thermal conductivity is given by:

κ =
1
2π

∫ ∞

0
Λ(ω)M3D(ω)!ω∂fo

BE

∂T
dω

=
1
2π

∫ ωD

0

vg

τ−1(ω)
π

vg

2
ω2

2π2v3
g

!ω∂fo
BE

∂T
dω, (5.99)

7See http://nanohub.org/groups/cdf tools thermal energy course/wiki

http://www.wolframalpha.com/
http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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where the effective scattering rate τ−1(ω) is given by Matthiessen’s
rule:

τ−1(ω) = τ−1
i (ω) + τ−1

b (ω) + τ−1
U,p−p(ω). (5.100)

The integral in Eq. (5.99) needs to be evaluated numerically for
different strengths of the boundary scattering term. Performing
this integration, we obtain thermal conductivities of 3.5, 12.2 and
24.6 W/mK for the first, second and third nanostructures respec-
tively. As expected, the thermal conductivity increases with size of
the sample as the strength of boundary scattering varies inversely
with the size.

(b) The online Chapter 5 CDF tool can be used to observe the temper-
ature dependence of thermal conductivity for Si and Ge nanostruc-
tures. The tool can also be used to observe the change in thermal
conductivity with variation in the size of the sample. Figure 5.24
shows a snapshot from the CDF tool and reinforces the idea that
thermal conductivity increases with size of the nanostructure. The
graphs also show a T 3 dependence of thermal conductivity at low
temperatures (similar to specific heat) and the reduction in ther-
mal conductivity at high temperatures is due to the dominance of
Umklapp scattering.

http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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Fig. 5.23 Schematic of confined nanostructures.

Table 5.1 Scattering parameters for silicon and germanium
Material A (s3) B (s/K) C (K) θD (K)
silicon 1.32 × 10−45 1.73 × 10−19 137.39 452.8
germanium 2.4 × 10−44 8.8 × 10−20 57.6 202.7

Fig. 5.24 Snapshot from the online CDF tool.
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Appendix A

The Graphene ZA Branch

A.1 Introduction

The ZA phonon branch of graphene, shown in Fig. A.1 is quite peculiar
among the various types of phonon dispersion relations found in nature.
The ZA modes are important because even though their average group
velocity is low, they can contribute disproportionately to thermal energy
storage and heat conduction (Singh et al., 2011b). Often, the ZA disper-
sion’s quadratic character is presented as common knowledge, as if its form
should be obvious. However, new learners often do not possess such intu-
ition, and this appendix’s purpose is to provide a basis for the ZA dispersion
using continuum concepts.

A.2 Geometry and Governing Equation

The ZA branch derives from the so-called ‘flexural mode’ of plate bending,
which is an out-of-plane displacement as shown in Fig. A.2. In fact, con-
tinuum plate theory suffices for our purposes to derive the characteristic
quadratic dispersion. The variable w will represent local displacement in
the z direction.

The governing equation for vertical displacement w derives from Hamil-
ton’s principle, which is a variational conservation principle that balances
the kinetic and potential energies within a deformable body with the ap-
plied load. For the case of plate flexural deformation, the governing equa-
tion becomes (Doyle, 1997):

D∇2∇2w + ρh
∂2w

∂t2
= F . (A.1)
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where

D ≡ EY h3

12(1 − ν2)
= plate bending stiffness

ρ = plate density
h = plate thickness
F = plate loading (per area)
EY = plate modulus
ν = Poisson ratio

Fig. A.1 Phonon dispersion curves for graphene and the corresponding density of states
derived using a modified Tersoff potential (Singh et al., 2011b).

Fig. A.2 Schematic showing the vibrational displacement direction of the flexural mode
of a thin plate.
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A.3 Solution and Dispersion

As we did for time-varying displacements of the atomic chain, we can as-
sume a periodic solution for w(t):

w(x, t) = ŵ(x)eiωt, (A.2)

where ŵ is the amplitude of displacement. Upon substitution and simpli-
fication, the homogeneous governing equation for displacement amplitude
becomes:

∂2ŵ

∂x2
± β2ŵ = 0, (A.3)

where

β2 = ω

√
ρh

D . (A.4)

The veracity of the foregoing result can be inferred from considering the
homogeneous form of the original governing equation (Eq. (A.1)) in the
frequency domain as:

(
∇2∇2 − β4

)
ŵ = 0, (A.5)

for which simple substitution confirms that Eq. (A.3) is an intermediate
solution.

The full solution of Eq. (A.3) can be expressed as a plane wave:

ŵ(x) ∼ exp(−iKjx), (A.6)

where Kj are the allowable wavevectors corresponding to the eigenvalues
of Eq. (A.3):

K1 = ±
√
ω

(
ρh

D

)1/4

, (A.7)

K2 = ±i
√
ω

(
ρh

D

)1/4

. (A.8)

Rearranging and allowing only positive values of the resolved frequency
produces the dispersion relation:

ω =

√
D
ρh

K2 . (A.9)

This result reveals that flexural plate bending indeed produces a quadratic
dispersion, and in effect, the plate bending stiffness D serves the role of
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the spring constant from the discrete analysis of the atomic chain. The
corresponding group velocity is proportional to

√
ω:

vg =
dω

dK
= 2

√
ω

(
D
ρh

)1/4

. (A.10)

The elastic bending stiffness of graphene depends on the crystal orientation
and is generally D ≈ 1 eV (= 1.6 × 10−19 Nm), and graphene’s areal mass
density (ρh) is 7.6 × 10−7 kg/m2 (Lu et al., 2009). Taking a specific value
of D = 1.9 × 10−19 Nm produces the following dispersion:

ω =
(

5 × 10−7 m2

s

)
K2. (A.11)

The resulting ZA branch is shown in Fig. A.3.

Fig. A.3 Approximation of the ZA branch using a continuum flexural plate bending
model.
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Appendix B

Electron and Phonon Contributions
to Heat Conduction in Graphene

B.1 Introduction

Graphene is a material that has elicited tremendous interest in the research
and technology communities since the early 2000s because of its unique elec-
trical properties, and to a lesser extent its thermal properties. Graphene’s
unique electronic band structure (i.e., dispersion) produces high 2D con-
ductivity and has motivated numerous concepts for use in three-terminal
devices (Das Sarma, et al., 2011). Unlike most materials, the electronic
E(k) dispersion in graphene is linear near the intrinsic Fermi level (or Dirac
point), much like photons or long-wavelength acoustic phonons, as shown in
Fig. B.1. Even though graphene exhibits outstanding electrical conduction
properties, its thermal properties are dominated by phonons, and here we
explain this outcome qualitatively using the concept of 2D mode density,
M2D.

B.2 Mode Densities

This linear electronic dispersion produces a 2D mode density that is ex-
pressed as (Lundstrom and Jeong, 2013):

M2D(E) =
2|E|
π!vF

, (B.1)

where E is measured from the Dirac point, and vF is the constant electron
velocity (because of the linear dispersion), vF ≈ 106 m/s.

For phonons, the 2D mode density can be expressed generally as (see
Eq. (4.18)):

M2D(ω) =
K(ω)
π

= 2vg(ω)D2D(ω). (B.2)
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Fig. B.1 Band structure of graphene near the Dirac point. Figure from Lundstrom and
Jeong (2013), used with permission.

Using the Debye approximation for the LA and TA phonon branches
(see Eqs. (2.50) and (2.51)) and quadratic dispersion for the ZA branch
(Eq. (A.11)), the mode densities become:

M2D,LA(ω) =
ω

πvg,LA
, (B.3)

M2D,TA(ω) =
ω

πvg,TA
, (B.4)

M2D,ZA(ω) =
1
π

√
ω

C
, (B.5)

where C = 5 × 10−7 m2/s. Debye group velocities for the LA and TA
branches in graphene are vg,LA = 2 × 104 m/s and vg,TA = 1.5 × 104 m/s
(Singh et al., 2011b).

Notably, the electron mode density of Eq. (B.1) is essentially identical
(with a factor of 2 for spin) to that of the linear phonon branches (LA
and TA) in Eqs. (B.3) and (B.4). The major quantitative difference is that
the electron velocity vF is two orders of magnitude larger than the phonon
group velocities, making the electronic mode density much smaller than
those of the linear acoustic branches.
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Fig. B.2 2D mode densities of graphene for electrons and the three active phonon
branches between 0 and 50 meV. The electronic result uses a linear dispersion approxima-
tion, while phonon approximations are linear for the LA and TA branches and quadratic
for the ZA branch.

Figure B.2 shows the resulting variation of 2D mode densities for elec-
trons and all acoustic phonon branches over the energy range from zero to
50 meV, which is approximately 2kBT at room temperature. The results
indeed show that the electronic mode density is one to two orders of mag-
nitude below those of phonons. Consequently, we expect notionally the
phonons to dominate heat conduction. The figure shows further that the
ZA mode density is much higher than any others over the plotted energy
range. This result suggests that ZA modes will be prevalent thermal carri-
ers, at least up to room temperature.

B.3 Thermal Conductivity

Of course the mode density does not itself dictate a material’s thermal con-
ductivity completely. A generalized version of Eq. (5.7) that encompasses
all carriers and branches in graphene as an energy integral is:

κ2D =
∑

i

1
2π!

∫
MdD(E)Λ(E)(E − µ)

∂fo
i

∂T
dE, (B.6)

where i represents electrons and each phonon branch.
We note that the scattering term, as discussed in Chapter 5, can be

very complicated and has elicited its share of scholarly discourse (Seol
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et al., 2011b; Singh et al., 2011a). Further, the temperature derivative term
in Eq. (B.6) differs for electrons and phonons, but as shown in Figs. 4.3
and 4.4, this term’s magnitude is similar near the peak in thermal con-
ductance (i.e., near E ≈ kBT ). Despite the absence of a full quantitative
analysis here, the extremely large difference among mode densities between
electrons and phonons suggests that phonons should dominate heat con-
duction, and indeed, experimental measurements corroborate this notion.
The total thermal conductivity of substrate-supported graphene has been
measured to be of order 100 to 1000 W/mK (using the intergraphene plane
spacing of 0.34 nm as the cross-section height) (Seol et al., 2011b), whereas
the electron-only contribution has been measured recently to be of order 1
to 10 W/mK (Tayari et al., 2013)—i.e., the electron contribution to thermal
conductivity is one to two orders of magnitude less than that of phonons.
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