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Preface 
 
Brief description: 
 
This book offers guidance for beginners to design and conduct measurements of thermal 
properties at the nanoscale using electrothermal techniques.  The emphasis is on 
measuring thermal conductivity, though thermal diffusivity and thermal boundary 
resistance (also known as thermal contact resistance) are also touched on.  The only 
prerequisites expected of the reader are the basic familiarity with electrical instruments 
typical of a bachelor’s degree in science or engineering, and knowledge of the three basic 
heat transfer laws, namely, Fourier’s law of heat conduction, Newton’s cooling law of 
convection, and the Stefan-Boltzmann radiation law. 
 
We have two goals in this book.  The basic one is to introduce readers to some of the 
popular techniques for electrothermal measurements at the nanoscale, and guide them to 
conduct successful measurements by themselves.  As a more advanced goal, we also 
hope to stimulate some readers to extend existing techniques, or even develop new 
methods from scratch, according to their own unique interests and constraints, e.g. 
sample geometry and thermal properties. 
 
Organization of the book: 
 
Chapter 1 briefly introduces prevailing experimental techniques, and emphasizes the 
tension between the simplicity of microfabrication and simplicity of heat transfer model. 
 
Chapter 2 discusses how to select the proper technique, considering the sample’s 
dimensionality and geometry. 
 
Chapter 3 presents some detailed aspects of experimental design and validation which are 
usually omitted from journal papers, and even theses, but which are nevertheless 
important for preparing a successful experiment. 
 
Chapter 4 highlights the importance of uncertainty and sensitivity analysis, and discusses 
both the conventional partial derivative method and a less familiar Monte Carlo scheme. 
 
The Appendices summarize additional notes, including a list of notation, the key settings 
of a lock-in amplifier, the effect of natural convection on the 3w method, the advantages 
of a four-probe AC measurement, an op-amp circuit to convert a voltage source to a 
current source, the vacuum level needed to suppress air conduction, radiation shields to 



minimize radiation losses, and brief comments on material properties and the lognormal 
distribution. 
 
Distinction from related works: 
 
There are already many review articles and book chapters digging deeply into the 
technical details of measurement techniques for thermal properties of nanostructures.  
Early reviews on thin films include Refs. [1]–[3].  A recent extensive collection of 
reviews, edited by Chen [4], refreshes perspectives on a broad range of experimental 
techniques for various nanostructures, including electrothermal methods for measuring 
thin films [5] and nanowires and nanotubes [6]. 
 
This book takes a higher level, more pedagogical approach, and is aimed at a relatively 
less expert audience than a typical review article.  Our hope is that a motivated early-
stage graduate student could use this book to select the best measurement technique for 
their sample, and in consultation with more specialized literature, develop their own 
experimental setup and see through a successful measurement with confidence.   
 
References: 
[1] D. G. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, R. O. Pohl, D. G. Cahill, H. 

E. Fischer, T. Klitsner, E. T. Swartz, and R. O. Pohl, “Thermal conductivity of thin 
films : Measurements and understanding Thermal conductivity of thin films : 
Measurements and understanding,” vol. 1259, no. 1989, 2002. 

[2] Kenneth E. Goodson and M. I. Flik, “Solid layer thermal-conductivity 
measurement techniques,” Appl. Mech. Rev., vol. 47, pp. 101–112, 1994. 

[3] T. Borca-Tasciuc and G. Chen, “Experimental Techniques for Thin- Film Thermal 
Conductivity,” in Thermal Conductivity, 2004. 

[4] G. Chen, “PROBING NANOSCALE HEAT TRANSFER PHENOMENA,” Annu. 
Rev. Heat Transf., vol. 16, pp. 1–6, 2013. 

[5] C. Dames, “CHAPTER 2 MEASURING THE THERMAL CONDUCTIVITY OF 
THIN FILMS : 3 OMEGA AND RELATED ELECTROTHERMAL METHODS,” 
Annu. Rev. Heat Transf., vol. 16, pp. 7–49, 2013. 

[6] A. Weathers and L. Shi, “Thermal Transport Measurement Techniques for 
Nanowires and Nanotubes,” Annu. Rev. Heat Transf., vol. 16, no. 1, pp. 101–134, 
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Nomenclature 

 
a  Physics variables (usually a vector including many components) 
a  One component of a 
A  Area 
b  Heater half-width (with subscript sens: Sensor half-width) 
c  Uncertainty contribution 
C  Volumetric heat capacity 
d  Distance 
D  Thermal diffusivity 
h  Heat transfer coefficient for conduction, convection, or radiation 
I  Current 
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l  Heater length 
L  Sample length (with subscript p: Penetration depth) 
m  Slope 
n  Length of Z, or number of data points (clear from context) 
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X  Control variables (usually a vector including many components) 
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Z  Concatentation of X and Y, that is, Z=[X;Y] 
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Z  Thermal impedance (with subscript e: Electrical impedance) 
 
 
Greek 
a   Temperature coefficient of electrical resistance 
b  Fin parameter (b-1 is the characteristic decay length of a fin’s T(x) profile) 



g  Dimensionless ratio in the T-bridge method, g = RHtr / (4Rsampl) 
d  Perturbation of variables (Chapter 4) 
e  Emissivity 
h   A constant (» 0.923) 
x  Square root of the ratio between the in-plane and cross-plane thermal 
conductance 
r  Electrical resistivity 
s  Electrical conductivity or Stefan-Boltzmann constant (5.67´10-8 Wm-2K-

4).  (clear from context) 
t  Time constant (with subscript e: Electrical time constant) 
f  Phase angle  
c   Used in definition of Confidence Interval: CI = (1-c)´100%  
w  Angular frequency (with subscript H: heating frequency, wH = 2w) 
 
 
Subscripts and Superscripts 
’’  Area normalized 
’’’  Volume normalized 
¥  Environment 
0  Condition of negligible self heating (e.g. Re,0, when driving current à0) 
1w, 3w  Harmonic number 
I, II  Two principal axes 
^  Cross-plane direction 
//  In-plane direction 
avg  Average 
bkg  Background 
B-G  Bloch-Grüneisen 
BotOx  Bottom oxide layer 
c  Contact 
CC  Chip carrier 
CF  Cold finger 
cr  Cross sectional, e.g. Acr is cross sectional area 
char  Characteristic 
cond’n  Conduction 
conv’n  Convection 
cylind  Cylindrical tube 
e  Electrical 
eff  Effective 



expt  Experiment 
film  Thin film 
gr  Graphene flake 
gr-ox  from graphene flake to top / bottom oxide layer 
gr-Si  from graphene flake through the bottom oxide layer to Si substrate 
H  Heating 
High-T  High temperature limit 
Htr  Heater 
HtrToS1 From heater to sensor #1 
HtrToS2 From heater to sensor #2 
i  i-th component 
island  Heating or sensing island in the microfabricated-device method 
LB  Lower bound 
linear  Linear fit 
max  Maximum 
min  Minimum 
msrd  Measured 
ox  Oxide layer 
ox-Si  From bottom oxide layer to Si substrate 
OxUnderHtr The portion of the top oxide layer beneath the line heater 
p  Penetration 
rad’n  Radiation 
rms  Root-mean-square 
S1  Sensor #1 
S2  Sensor #2 
sampl  Sample 
Sens  Sensor 
Serpentine Serpentine heater in the microfabricated-device method 
set  Set point 
sim  Simulated 
synth  Synthesized 
Si  Silicon substrate 
Si-CF  From Si substrate to cold finger 
silver  Silver paint 
sim  Simulated 
SLG  Single layer graphene 
sub  Substrate 
surf  Surface 
synth  Synthesized 



TopOx  Top oxide layer 
true  True physics 
UB  Upper bound 
x  in-phase component of the current or voltage 
y  out-of-phase component of the current or voltage 
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Chapter 1: What is in your toolbox? 
 
Intuition is nothing more than having studied all the important solved problems. 

-- S. D. Senturia (inspired by G. Polya’s How to Solve It) 
 
Nanoscale heat transfer research has been largely driven by applications in information 
technology and energy.  For example, as transistors and memory relentlessly shrink in 
size and accelerate in speed, better solutions for heat dissipation are required.  Good 
thermal design relies on accurate knowledge of micro/nanoscale devices’ thermal 
properties.  However, the thermal properties of nanostructures can differ dramatically 
from their bulk counterparts.  For example, the thermal conductivity (k) of a silicon 
nanowire or a nanocrystalline silicon substrate may be over an order of magnitude lower 
than k of an intrinsic silicon wafer, depending on the diameter of the nanowire or the 
grain size of the nanocrystal [1], [2].  Thus accurately measuring the thermal properties of 
such nanostructures is mandatory. 
 
Thermal property measurements, whether of lumped thermal conductance, thermal 
conductivity, or thermal contact resistance, are fundamentally built on measurements of 
temperature and heat flux.  Among the myriad ways to heat a sample and to measure its 
temperature, this book focuses exclusively on electrical techniques: Joule heating and 
resistance thermometry.  Such electrothermal methods are convenient and relatively easy 
to try because of the widespread availability of high-accuracy instruments at relatively 
low cost, and the ease of automating instrument control and data acquisition directly in 
the electrical domain.  However, for nanoscale samples the attendant microfabrcation 
challenges are not to be overlooked, and indeed the tradeoff between simplicity of 
fabrication and simplicity of thermal analysis is one of the major themes of this book.  
 
An ideal measurement technique of course is both accurate and simple, in both the 
microfabrication and the heat transfer model.  However, in most cases we have to 
sacrifice one to pursue the other (Fig. 1-1).  Some representative techniques are depicted 
as examples to illustrate this point, and summarized in Table 1-1, which is a high level 
guideline to selecting an appropriate technique. 
 
The remainder of Chapter 1 is devoted to a brief introduction of each of these techniques, 
deferring the detailed technical discussion to Chapter 2 (corresponding section numbers 
are given in Table 1-1). 
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Fig. 1-1.  The conceptual tradeoff (blue solid line) between simplicity of microfabrication and heat transfer 
model.  Some popular techniques (red symbols) are depicted qualitatively, and will be discussed in detail in 
this book.  See also Table 1-1. 
 
Table 1-1.  A high-level guideline to selecting an electrothermal measurement technique.  The columns 
give the physical character and morphology of the sample., while the rows correspond to six popular 
techniques, each of which is depicted in Fig. 1-1 and briefly introduced in the corresponding section of 
Chapter 1 indicated in parentheses.  Entries in the table specify the relevant sections of this book.  For 
example, the central-line heater method is suitable for measuring the in-plane thermal conductivity of thin 
films, as discussed further in section 2-2-2D.  For nanotubes/wires and in-plane films, samples generally 
should be suspended above any substrate, with the exception of the heat spreader method.  Abbreviations: 
iso=isotropic; aniso=anisotropic; ^=cross-plane;  //=in-plane; X=not recommended.   
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1-1.  Resistance thermometry 
The techniques presented throughout this book rely heavily on resistance thermometry, 
the underlying physics of which is the temperature dependent electrical resistance Re(T) 
of a metal.  We focus on small temperature excursions such that the Re(T) curve can be 
linearized as 

,        (1.1) 

where Re,0 and Re are electrical resistances of the thermometer at a reference temperature 
T0 and the temperature of interest T, respectively, and a is the temperature coefficient of 
resistance defined as  and evaluated at T0.   An example of the 

uncertainty analysis of an Re(T) calibration is given in Section 4-3-2, and readers 
interested in additional information about resistance thermometry are referred to Ref. [3]. 
 
1-2.  3w Method 
 

 
Fig.  1-2.  Schematic of the classic 3w method to measure the thermal conductivity of a substrate.  (a) A 
microfabricated metal line (yellow) on top of the sample (gray) serves simultaneously as heater and 
thermometer.  (b, from top to bottom) An AC current with frequency of 1w drives the experiment and 
causes Joule heating with frequencies of 0w (DC) and 2w.  The Joule heating in turn results in a 2w 
temperature oscillation superposed with a DC offset.  This temperature response, which depends on the 
thermal properties of the sample, increases the electrical resistance in direct proportion.  Finally the 1w 
driving current and the resistance response (at DC and 2w) produce voltages at 1w and 3w, both of which 
contain information of the thermal property of the sample.  In practice it is the 3rd harmonic which is most 
useful, giving this method its name.   
 
 
The 3w method is arguably the most widely used electrothermal measurement technique, 
because of its adaptability to measure various structures (see Table 1-1), its relatively 
straightforward microfabrication, and its simple heat transfer model.  This method was 
developed by Cahill [4] in the late 1980s to measure the thermal conductivity of bulk 

Re = Re,0 1+α T −T0( )⎡⎣ ⎤⎦

α = dR dT( ) Re,0

Current 

Heating 

Temperature 

Voltage 

eRIQ 2=

I

TΔ

( )TRR ee Δ+= α10,
Elect. Resistance 

eRIV =

1ω 

DC+2ω 

DC+2ω 

DC+2ω 

1ω+3ω 

I1ω V3ω 

Thermal 

Properties 

(a) (b) 



	 1-4	

samples (as in Fig. 1-2) and films.  As an indication of the impact of such microscale 
techniques on the broader heat transfer community, the 3w method is now used as an 
example problem in a celebrated undergraduate textbook (pg. 300 of Ref. [5]). 
 
The basic idea of the classic 3w method [4] is illustrated in Fig. 1-2.  The measurement is 
driven by an AC current with angular frequency ω through a heater line micro-fabricated 
on the sample.  The resulting Joule heating oscillates at a frequency of 2ω, which 
correspondingly produce a temperature field oscillating at the same frequency.  As a 
response to this temperature oscillation, the electrical resistance of the heater line also 
carries an AC component with a frequency of 2ω, superposed on a DC component.  
Finally, combining these two components of the electrical resistance with the driving AC 
current, we obtain two superposed voltage components, V1ω and V3ω, both of which 
contain important information of thermal properties of the sample.  In particular, the 3ω 
component is widely used, and known as the 3w method. 
 
A detailed discussion of the technical aspects of this classic 3w method is given in 
Section 2-1-1.  We also give an example in Section 3-2 on how to estimate some key 
electrical parameters prior to the experiment, and another example in Section 3-4 on a 
sanity check to confirm the measurement is dominated by the thermal signal rather than 
various non-thermal artifacts. 
 
The classic 3w method for measuring isotropic bulk samples has also been extended to 
measure the thermal properties of anisotropic bulk samples (Section 2-1-2), thin films 
along both cross-plane (Section 2-2-1) and in-plane (Section 2-2-2E) directions, 
nanotubes and nanowires (Section 2-3A), and even liquids, biological tissues, and other 
soft matter (Section 2-4). 
 
Example 1-1: Beginning with a driving AC current passing through the heater line, 

, where w is the angular frequency of the driving current, obtain 

expressions for each of the steps in the flowchart of Fig. 1-2b.  Assuming that the 
temperature response (ΔT) is related to the Joule heating (Q) by , where R 
represents an effective thermal resistance of the sample underneath the heater line (Fig. 1-
2a). 
 
Solution: 
With the driving AC current, Joule heating (to leading order) is generated as:  

, 

I = I1ω sin ω t( )

ΔT =Q ⋅R

Q = I 2Re,0 = I1ω
2 Re,0 sin

2 ω t( ) = I1ω2 Re,0 1
2 − 1

2 cos 2ω t( )⎡⎣ ⎤⎦
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where Re,0 is the leading term of the electrical resistance of the heater line.  Accumulation 
of the heat causes temperature response:  

. 

This temperature variation leads to an electrical resistance response:  
, 

and a corresponding voltage response:  

 

Applying a trigonometric identity, we arrive at 
. 

Thus, the 1ω component voltage can be expressed as 
,  

and likewise the 3ω component is 
. 

 
1-3.  Suspended Microfabricated-Device Method 

 
Fig.  1-3.  Schematic of the suspended microfabricated device method, redrawn after Refs. [12], [13].  Two 
islands are micro-fabricated for heating and sensing, respectively.  Each island is patterned with a 
serpentine heater/thermometer (platinum), and supported by five long SiNx beams with electrodes, four of 
which are for four-probe measurement of the heater/thermometer with the fifth for thermoelectric 
measurement of the sample.  The heating and sensing islands are thermally coupled by the sample, which 
undergoes one-dimensional steady-state heat transfer. 
 
The suspended microfabricated device method is another signature work of thermal 
measurement at the nanoscale.  This method achieves outstanding simplicity in its heat 
transfer model, namely, one dimensional (1D) steady state heat transfer, although it 

ΔT =Q ⋅R = I1ω
2 Re ,0R 1

2 − 1
2 cos 2ωt( )⎡⎣ ⎤⎦

Re = Re ,0 1+αΔT( ) = Re ,0 1+α I1ω2 Re ,0R 1
2 − 1

2 cos 2ωt( )⎡⎣ ⎤⎦{ }

V = I ⋅Re
= I1ω sin ωt( )⎡⎣ ⎤⎦Re ,0 1+α I1ω

2 Re ,0R 1
2 − 1

2 cos 2ωt( )⎡⎣ ⎤⎦{ }.

V = I1ωRe ,0 + 3
4α I1ω

3 Re ,0
2 R⎡⎣ ⎤⎦sin ωt( )− 1

4α I1ω
3 Re ,0

2 R⎡⎣ ⎤⎦sin 3ωt( )

V1ω = I1ωRe ,0 + 3
4α I1ω

3 Re ,0
2 R⎡⎣ ⎤⎦sin ωt( )

V3ω = − 1
4α I1ω

3 Re ,0
2 R⎡⎣ ⎤⎦sin 3ωt( )

VHtr
+ VHtr

− IHtr
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requires complex microfabrication.  This method was developed in the early 2000s by 
Shi, Kim, Li, and co-workers [7], [8], who applied it for a number of pioneering works 
including the first measurement of the thermal conductance of individual multiwall 
carbon nanotubes [9], silicon nanowires [1], and silicon/silicon-germanium superlattice 
nanowires [10], and is another example problem of the celebrated undergraduate textbook 
(pg. 110 of Ref. [5]). 
 
As shown in Fig. 1-3, in a typical implementation two isolated islands are 
microfabricated from silicon nitride (SiNx) and patterned with a serpentine platinum thin 
film for heating and temperature sensing.  A sample bridges the two islands, allowing 1D 
heat transfer through it.  Each island is supported by five long SiNx beams with Pt 
electrical leads.  Four leads are used for four-probe resistance measurement of the Pt 
serpentine, and the fifth lead enables electrical and thermoelectric probing of the sample 
itself.   By measuring the Joule heating at the heating island and the temperature of the 
two islands by resistance thermometry, the thermal conductance of the sample is 
obtained. 
 
More technical details of this method will be discussed in Section 2-2-2A. 
 
1-4.  Distributed Self-Heating Method 

 
Fig.  1-4.  Schematic of the distributed self-heating method.  The sample, suspended above a trench, also 
serves as its own Joule heater and distributed thermometer.  The thermal conductivity of the sample is 
obtained by analyzing the measured I-V curve with a one-dimensional steady-state heat diffusion equation 
with a volumetric heat source. 
 
The distributed self-heating method is appealing for its simple experimental 
configuration, requiring no data acquisition beyond the familiar I -V curve of the sample.  
The basic idea is illustrated in Fig. 1-4.  The sample also serves as the heater and the 
temperature sensor.  A DC or AC current passes through a suspended, conducting 
sample, and generates Joule heating uniformly along the sample.  Knowing the Joule 
heating power and the average temperature of the sample (from resistance thermometry 

I 

V 

T∞ 
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of the sample itself), the thermal conductivity of the sample is extracted from the one 
dimensional steady-state heat diffusion equation with uniform heat generation.  This 
technique has been used to study the thermal properties of carbon nanotubes (CNTs) 
[11]–[13] and microwires [14], [15]. 
 
This method involves a number of thermal subtleties which must also be considered to 
ensure an accurate measurement, such as the thermal and electrical contact resistances 
where the film edge meets the substrate, the substrate spreading resistance, the radiation 
losses from the film surfaces, and the linearity of the I - V curve.  More discussion about 
the technical aspects of this self-heating method will be given in Section 2-2-2B. 
 
Example 1-2:  For steady-state Joule heating of the sample depicted in Fig. 1-4, obtain 
the parabolic temperature profile T(x) along the sample, where x is the direction spanning 
the trench.   Also calculate the average temperature of the sample, .  Focus on the 

ideal scenario which clamps the temperature of the two ends of the sample to T¥, thus 
neglecting the contact and substrate spreading resistance.  Similarly, neglect radiation and 
convection losses from the sample surfaces.  The sample has length L and cross sectional 
area Acr.  
 
Solution: 
The governing equation is 

,  

where  

  

is the volumetric heat generation due to Joule heating.  The boundary conditions are 

 

where we measure x from the symmetry plane.  Solving, we obtain the temperature 
profile: 

. 

In real experiments using resistance thermometry, we measure the average temperature 
across the sample: 

T

d 2T
dx2

+ Q
'''

k
= 0

Q ''' = IV( ) AcL( )

T x = L
2( ) = T∞ ,

dT
dx x=0

= 0.

  
T x( ) = T∞ −

IV
2kAc L

x2 + IVL
8kAc
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1-5.  Variations of the Distributed Self-Heating Method, including T-Bridge Method 

 
Fig.  1-5.  Schematic of the T-bridge method.  This method can be viewed as a variation of the distributed 
self-heating method.  The sample (green) acts as a shunting thermal resistor in parallel with the 
heater/sensor (yellow). 
 
One variation of the distributed self-heating method is to omit the trench underneath the 
sample, thus allowing thermal contact between the entire sample and the substrate [16].  
This variation simplifies the microfabrication, with the corresponding tradeoff of 
complicating the heat transfer model.  A second variation is to allow an electrically non-
conducting sample, but a metal coating of the sample is required [17].  A third variation 
is the so-called T-bridge method [18], [19].  As shown in Fig. 1-5, in this variation the 
sample is liberated from the duty of heater and sensor, and serves solely as a shunting 
thermal resistor.  More technical details will be discussed in Section 2-2-2C. 
 
Example 1-3: Show how the T(x) temperature profile along the heater/sensor of the T-
bridge method differs from the parabolic profile obtained in Example 1-2.  For simplicity, 
here we neglect the width of the sample as compared to the length of the heater/sensor.  
Use similar idealizations as in Example 1-2 with regards to perfect thermal contact and 
neglecting surface heat losses, from both heater/sensor and sample.  The heater/sensor 
has length L and cross sectional area Acr.  Express your result as a function of the 

dimensionless ratio , where  is the thermal resistance of 

the heater/sensor, and  is the thermal resistance of the sample. 

  

T = 1
L

T x( )dx
−L 2

L 2

∫

= T∞ +
IVL

12kAc

.

V

I

T∞

T∞

T∞

T∞T∞
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γ = RHtr 4Rsampl( ) RHtr = L kHtrAcr( )
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Fig. 1-6.  Dimensionless temperature profile of the T-bridge method for different values of g, the ratio 
between the thermal resistance of the wire heater and the sample. 
 
Solution: 
The governing equation applying to the heater/sensor (gold in Fig. 1-5) is the same as the 
distributed self-heating method in Example 1-2: 

,  

where 

  

is the volumetric heat generation due to Joule heating.   
 
The first boundary condition on the end of the heater/sensor is also the same as the 
distributed self-heating method: 

 

 
The key difference comes from the boundary condition in the middle of the heater/sensor, 
where now heat is leaking through the sample: 

 

Solving, we obtain the temperature profile, which is modified from a parabola: 

, 
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where  is the Joule heating applied to the heater/sensor.  The 

dimensionless temperature profiles for five different g are shown in Fig. 1-6.   
 
As a sanity check, in the limit , the thermal path through the sample 

is broken.  Since there is no heat flowing through the sample, the solution recovers the 
parabolic temperature profile of Example 1-2 as expected, and shown as the blue line in 
Fig. 1-6. 
 
On the other hand, in limit , the sample is a thermal short circuit, so that the 

temperature at the midpoint of the wire heater is clamped to T¥.  This results in two 
smaller parabolas as shown in red in Fig. 1-6, each corresponding to Example 1-2 with 

and . 
 
It can be proven that the sensitivity of this technique is the best for intermediate g in the 
vicinity of unity [19].  Recently, a generalization to samples with a finite width has also 
been developed [20]. 
 
1-6.  Central-Line Heater Method 

 
Fig.  1-7.  Schematic of the central-line heater method (sometimes called a Völklein method).  This 
technique takes advantage of the symmetry of the structure, resulting in a one dimensional steady state heat 
transfer on both sides of the central heater line.  Temperatures are measured at both metal lines.  Care must 
be taken about issues such as thermal contact and heat spreading from the edge of the sample to the 
substrate, as well as radiation losses from the sample. 
 
The central-line heater method [21]–[25], sometimes called a Völklein method [26], is 
another technique with an appealingly simple heat transfer model, namely, 1D steady 
state heat transfer.  As shown in Fig. 1-7, the placement of the heater line in the middle of 
the suspended sample takes advantage of symmetry.  In this case, the Joule heating 
separates equally into two halves, each flowing to the corresponding end of the sample. 
 

Q =Q ''' ⋅ Acr ⋅ L( )

γ = RHtr 4Rsampl( ) = 0

γ = ∞

2/LL® 2/VV ®

T∞
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As compared to the suspended microfabricated-device method (Section 1-3), the central-
line heater method further simplifies the heat transfer model by eliminating the heat 
losses through the five long SiNx beams of the heating island.  However, aligning the 
voltage probes requires some care.  Another distinction from the microfabriction 
perspective is that the central line heater method requires a relative large sample area to 
place the heater and sensor, while the suspended microfabricated-device method does not 
have this constraint.  More detailed technical discussion will be found in Section 2-2-2D. 
  
1-7.  Heat Spreader Method 

 
Fig.  1-8.  Schematic of a heat spreader method used to measure k for graphene (gr) encased between top 
and bottom SiO2 films (ox), on a high-k Si wafer which acts like a heat sink.  Four metal lines (gold color) 
are patterned on top of the sample, to act as a heater and three resistive thermometers.  The key physics 
determining the temperature response are the lateral heat spreading along the encased graphene flake and 
the vertical leakage through the lower SiO2 film.  k for graphene is obtained by fitting the measured 
temperature profile to a heat transfer model. 
 
The heat spreader method [27], [28] can be viewed as a variation of the central-line 
heater method.  As compared to the central-line heater method (Fig. 1-7), the heat 
spreader method avoids the challenge of suspending a sample across a trench, which 
significantly simplifies the micro-fabrication.  As a tradeoff, the heat transfer model of 
the heat spreader method is more complicated.   
 
Figure 1-8 shows a schematic of the heat spreader method developed by Jang, Chen, et. 
al. [28] to measure the in-plane k of encased graphene.  The graphene thin film is encased 
between top and bottom oxide layers, a configuration which is relevant to 
microelectronics applications, where graphene might be used as transistors, interconnects, 
and/or thermal management materials, likely surrounded by dielectric isolation.  The 
silicon substrate acts as a heat sink.  A heater and three temperature sensors are micro-
fabricated on top of the upper oxide layer, which is used to electrically isolate these 
electrodes from the graphene.  The heater power QHtr flows vertically through the stack 
into the Si heat sink, while simultaneously spreading laterally through the high-k 
graphene layer.  Compared to a control experiment with no graphene layer, the 
configuration in Fig. 1-8 results in higher temperatures at the sensors T1 - T3.  Finally, the 

T1 T2 T3
Q

ox

ox

gr

Si

T∞
x

y
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in-plane k of the graphene layer is inferred by fitting the three measured temperatures (T1, 
T2, and T3) to a one-parameter thermal model. 
 
Example 1-4: The simplest thermal model for analyzing Figure 1-8 is to treat the 
graphene heat spreader as a fin, where the effective “convection” coefficient heff 
represents the vertical conduction through the lower SiO2 layer into the Si heat sink.  
Thus , where kBotOx and tBotOx are the thermal conductivity and thickness 

of the lower SiO2 layer.  Use this model to obtain an exponentially-decaying temperature 
profile T(x) along the graphene heat spreader.  You may assume the sample is very large 
in the ±x direction, and that there is no variation out of the plane in y, making this a 2D 
problem. 
 
Solution: 
The standard governing equation for a fin is 

,  

where k, P, and Acr are the thermal conductivity, perimeter, and cross-sectional area of 
the fin.  Corresponding to Fig. 1-8, kgr,// and P are the in-plane thermal conductivity and 
the “wetted perimeter” of the graphene flake.  For a flake of width w along the y direction 
and thickness tgr, we have  and  because the flake only conducts heat out 

through its lower face. 
 
We take the first boundary condition to be a prescribed temperature  

. 

This could be obtained by measuring the electrical resistance of the heater (Fig. 1-8), 
although this is not actually necessary for this example problem because we care only 
about the shape of the temperature profile. 
 
The second boundary condition is for the end of the fin, which might be a presecribed 
flux or a temperature.  Here for simplicity we assume the graphene flake is infinitely 
long, and thus in the “long fin limit” the second boundary conduction becomes 

. 

 
Solving, we obtain the temperature profile: 

,  

heff = kBotOx tBotOx

d 2T
dx2

−
heff P

kAcr
T −T∞( ) = 0

Acr = w ⋅ tgr wP =

T x = 0( ) = Tb

T x→∞( ) = T∞

T x( ) = T∞ + Tb −T∞( )exp −βx( )
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where  is a characteristic decay length.  For the configuration of Fig. 

1-8 we have .  Thus, by measuring the shape of the 

temperature profile, it is possible to determine b-1 and kgr,// of the graphene flake. 
 
It turns out that real experiments fall well outside of this idealized fin regime, requiring a 
more sophisticated analysis as discussed further in Chapter 2-2-2F.  In addition, 
discussions of the thermal design, control experiments, and sanity checks for this method 
can be found in Sections 3-1, 3-3, and 3-4; and the uncertainty and sensitivity analysis in 
Sections 4-2 and 4-3. 
 
1-8.  Closing remarks 
 
In this chapter we have briefly introduced the basic ideas and physical pictures of six 
common techniques for electrothermal measurements at the nanoscale.  We will revisit 
each of these in more depth in subsequent chapters, as referenced at the end of each 
preceding section and summarized in Table 1-1. 
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Chapter 2.  Which tool should you choose? 
 
Water shapes its course according to the nature of the ground over which it flows; the 
soldier works out his victory in relation to the foe whom he is facing.  Therefore, just as 
water retains no constant shape, so in warfare there are no constant conditions.  He who 
can modify his tactics in relation to his opponent and thereby succeed in winning, may be 
called a heaven-born captain. 

-- Sun Tzu, The Art of War 
 
In this chapter we discuss how to choose a suitable measurement technique from the 
toolbox outlined in Chapter 1.  The criterion is mainly based on the sample’s 
dimensionality and geometry, e.g. bulk, film, or nanotube/wire (also referred to as 3D, 
2D, or 1D, respectively), and this chapter is organized accordingly.  In some cases more 
than one technique is applicable to a specific sample type, so trade-offs are also 
discussed. 
 
Most of the techniques presented below have been widely discussed in previous 
literature, so here we take a high level approach, minimizing mathematical details to 
emphasize the most useful final expressions for the thermal properties of interest.  We 
also present some more recent developments in measuring anisotropic solids (Section 2-
1-2) and biological tissues (Section 2-4), which have not yet been reviewed elsewhere.   
 
We also seek to convey the message that behind any experimental technique there is a 
corresponding heat transfer model, and any model relies on various assumptions which 
must be justified in the real experiments.  Such restrictions often lead to substantial 
constraints on the practical experimental parameters, as discussed throughout this 
chapter.  One good example is the process of selecting the proper frequency range for the 
classic 3w method, as discussed in Section 2-1-1.   
 
2-1.  Bulk samples 
Although this is a book on measurements at the nanoscale, in most cases understanding 
the thermal transport physics of a nanostructure also requires knowledge of the thermal 
properties of its bulk form.  Here we present well-established 3w methods for solid 
substrates (semi-infinite thickness) with both isotropic and anisotropic thermal properties, 
which also form the basis for several modified 3w methods presented later for 
nanostructure measurements. 
 
2-1-1.  Isotropic solids: the classic 3w method for a semi-infinite substrate 



	 2-2	

 
Fig. 2-1.  The concept of penetration depth [Lp = (Dsub/wH)0.5] in a periodic heating problem.  The red line 
represents the amplitude envelope of the oscillating thermal wave which penetrates from the heater line of 
width 2b (gold color) into the substrate.  The key feature is that Lp can be tuned by varying the heating 
frequency wH.  The intermediate scenario satisfies the basic assumptions of the classic 3w method, i.e. b << 
Lp << tsub. 
 
The classic 3w method is widely used for measuring the thermal conductivity of bulk 
samples, especially those with low thermal conductivities.  As compared to traditional 
steady-state techniques, the 3w method has a faster measurement time, is relatively 
immune from radiation losses, and as an AC method is insensitive to DC artifacts from 
parasitic thermoelectric voltages [1], [2].  
 
The most important heat transfer concept in the 3w method is the thermal penetration 
depth, defined as 

,          (2-1) 

where Dsub is the thermal diffusivity of the substrate and wH is the heating frequency (to 
be distinguished from the frequency of the driving current, w, with wH =2w).  Intuitively, 
Lp is a characteristic length scale that describes how far the heat can penetrate through the 
sample from the heater.  As indicated in Eq. 2-1 and visualized in Fig. 2-1, a powerful 
feature of the periodic heating problem is that the penetration depth can be tuned by 
varying the heating frequency: the higher the heating frequency, the shorter the 
penetration depth.  This feature offers an approach to localize heat. 
 

Lp

Periodic	heating	

Substrate

Low	frequency High	 frequencyIntermediate	frequency

tsub

2b

Lp =
Dsub

ωH



	 2-3	

Using this concept of the penetration depth, we discuss the key assumptions of the heat 
transfer model of the classic 3w method, which requires a very narrow, infinitely long, 
heater line which periodically heats a semi-infinite substrate [1].  Although infinities are 
lacking in real experiments, these idealizations are still a good approximation as long as 
the experiment lies in the intermediate regime depicted in Fig. 2-1:  

(1) Lp >> b, where b is the half-width of the heater line; 
(2) Lp << l, where l is the length of the heater line (into the page); 
(3) Lp << tsub, where tsub is the thickness of the substrate. 

The left scenario in Fig. 2-1 is inconvenient for analysis because the heating frequency is 
so low as to violate the 3rd requirement; likewise, in the right scenario the heating 
frequency is so high that the 1st requirement is violated.  Thus, these two requirements set 
upper and lower bounds for the heating frequency of 3w method.  (The 2nd requirement is 
rarely limiting in practice, because l is determined by microfabrication and one nearly 
always can use l >> tsub.) 
 
 

 
Fig. 2-2.  One possible instrumentation setup for the 3w method.  The heater deposited on top of the sample 
is driven by an AC current source, and its voltage drop monitored by a lock-in amplifier.  This is a typical 
configuration for 4-probe resistance thermometry.  Note that although the original setup with a cancellation 
resistor and a subtraction circuit (see Fig. 4 of Ref. [1]) is still most common, the simpler setup here is also 
possible if the lock-in has enough dynamic reserve and it is carefully configured. 
 
Regarding instrumentation, a fundamental challenge is the fact that the 3w voltages of 
interest are typically 100 - 1000 times smaller than the inherent 1w background.  This is 
most commonly addressed by using some variation of an adjustable resistor and a 
subtraction circuit, for example as presented in the original 1990 paper (Fig. 4 of Ref. 
[1]).  Figure 2-2 shows an alternative, which forgoes the background subtraction circuit 
but requires careful attention to the dynamic reserve settings to avoid overloading the 
lock-in amplifier [3].  For the AC current source, options include a homemade V-to-I 
converter (see an example in Appendix D), a turnkey commercial source as depicted in 
Figure 2-2, or, in special circumstances, an AC voltage source in series with a carefully-
chosen ballast resistor [3].   

Lock-In	(e.g.	SR850)	
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(e.g.	Keithley	6221)	
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Ref.	
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Fig. 2-3.  A typical 3w measurement performed on an undoped Si wafer at 310 K.  The in-phase (red 
symbols) and out-of-phase (blue symbols) 3w voltages are plotted as a function of the driving frequency 
f=w/2p (log scale).  The red line is a linear fit to the in-phase 3w voltage, the slope of which gives the 
thermal conductivity of 137.8 W/m-K using the equation in red; similarly, the blue horizontal line is the 
constant value fit to the out-of-phase 3w voltage, which gives the thermal conductivity of 140.3 W/m-K 
using the equation in blue.  As depicted in the inset schematic, the driving current in this measurement is 40 
mA (rms), and the heater line is 3µm wide and 1 mm long (between the two inner voltage probes). 
 
Figure 2-3 shows typical raw data for the 3rd harmonic voltages in the preferred 
intermediate frequency regime [b << Lp  << min(tsub, l)].  Both the in-phase and out-of-
phase signals include information about the thermal conductivity of the bulk sample.  
From the in-phase 3w voltage, the thermal conductivity can be obtained as [1], [3] 

,       (2-2) 

where l and Re,0 are the length and the electrical resistance (at the ambient reference 
temperature T0) of the heater line between the two voltage probes, dRe/dT is the slope of 
the electrical resistance of the heater line as a function of the temperature,  is the 

root-mean-square (rms) 1w driving current at a frequency f=w/2p,  is the in-phase 
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component (subscript x) of the rms 3w voltage, and correspondingly  is 

the slope of  as a function of natural logarithm of f. 
 
Note that Eq. 2-2 takes advantage of measurements spanning a range of frequencies, 
rather than simply a single point measurement.  Similarly, to incorporate information 
from a range of , the expression can be further generalized to 

.       (2-3) 

Although such a (f, ) sweep is rarely part of routine practice, when setting up a new 

experiment we find that verifying this universal  scaling is often a 

worthwhile diagnostic check (see an example in Fig. 3-8).  We highly recommended it 
for researchers setting up 3w measurements for the first time.   
 
As another check the out-of-phase component (subscript y) could also be used to 
independently extract the substrate thermal conductivity as 

,         (2-4) 

where  is the out-of-phase component of the rms value of the 3w voltage.  This 

out-of-phase approach is generally considered not as robust as the in-phase approach of 
Eq. 2-2, but it still can be a helpful check especially for novices and when setting up a 
new measurement system.   
  
Note that most other AC transient methods, such as the hot disk method [4], the laser 
flash method [5], and Ångström’s method [6], usually respond most fundamentally to the 
sample’s thermal diffusivity rather than conductivity.  For such a diffusivity 
measurement, the volumetric heat capacity is also required to obtain k, which requires 
additional information and introduces additional uncertainty.  Interestingly, because the 
3w method is based on cylindrical rather than rectilinear or spherical heat flow, its 
underlying thermal model directly gives the thermal conductivity rather than diffusivity. 
 
2-1-2.  Anisotropic solids: generalizations of the 3w Method 
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Fig. 2-4.  The 3w method can be extended to anisotropic substrates, to determine the values of the thermal 
conductivity tensor for a sample whose principal axes are (a) aligned with the surface of the sample [7], and 
(b) not aligned [8].  Here the heavy black lines represent the orientation of the sample’s crystal structure, 
for example, the basal planes of graphite.  See text.   
 
A.  Sample surface aligned with the material’s principal axes 
Borca-Tasciuc and Chen extended the 3w method to solids with anisotropic thermal 
conductivity [7], as long as the sample’s principal axes are parallel and perpendicular to 
the surface of the solid (Fig. 2-4a).  Under the same basic requirements as for an isotropic 
substrate listed above, i.e. a long narrow heater line periodically heating a semi-infinite 
substrate, Eqs. 2-2 and 2-4 can be generalized for an aligned anisotropic substrate.  It 
turns out the only change is to replace the isotropic k with the geometric mean of the two 
principal thermal conductivities, kI and kII	, as follows, 

,       (2-5) 

.        (2-6) 

To isolate kI and kII from their products in Eq. 2-5, the magnitude of the in-phase 
temperature oscillations (see Eq. 10 of Ref. [7]) versus ln(f) has to be taken into account 
as well. 
 
B.  Sample surface in an arbitrary orientation 
Recently, Mishra and Dames [8] removed the requirement for the material’s principal 
axes to be parallel and perpendicular to the surface of the solid, thereby adapting the 3w 
method to anisotropic solids with arbitrary orientations (Fig. 2-4b).  Equations (2-5) and 
(2-6) are further generalized to 

,      (2-7) 

.       (2-8) 
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where the x and y axes are naturally defined by the surface of the solid (not to be 
confused with x and y indicating the in- and out-of-phase components of a periodic 
signal), and the kij are components of the thermal conductivity tensor in the x-y coordinate 
system 

.          (2-9) 

In general this tensor is not aligned with the principal axes of the crystal structure which 

has a diagonal conductivity tensor .  It is important in Eqs. (2-7) and (2-8) to 

recognize that  is the determinant of the tensor Eq. (2-9), and thus is invariant 

upon rotation of the sample in the x-y plane.  Therefore, more information is needed to 
pin down all three components of the tensor Eq. (2-9).  This can be achieved using 
another one or two heater lines with different orientations and taking into account the 
magnitude of the temperature oscillations as well as their slope versus ln(f) (see Figs. 5 - 
7 of [8]). 
 
2-2.  Thin films 
 
The thermal properties of thin films have been intensely studied over the past three 
decades, and the technical details of thin-film 3w measurements are well reviewed in the 
literature [2], [9]–[11].  In this section, we present various electrothermal techniques for 
different orientations.  For cross-plane measurements we focus on a 3w method, while for 
in-plane measurements we present six different options.   
 
2-2-1.  Cross-plane: 3w Methods 
For a low-k film on a high-k substrate, the film’s cross-plane k is relatively easy to 
measure, since the film is mechanically supported on a substrate which makes the 
microfabrication easier than a suspended configuration.  The classic 3w method for bulk 
materials was extended to measure thin films by Cahill et. al. [12].   
 
Consider the film-on-substrate schematic in Fig.  2-5.  Assuming one-dimensional (1D) 
heat conduction vertically through the film, we have 

,         (2-10) 

kxx kxy
kxy kyy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ú
û

ù
ê
ë

é

II

I

k
k
0

0

kxx ⋅ kyy − kxy
2

k film,⊥ =
Qt film

ΔTfilm2bl



	 2-8	

where tfilm is the thickness of the thin film, b and l as usual are the half width and length 
of the heater line, Q is the Joule heating power applied to the heater, ^ means the cross-
plane direction, and  is the temperature difference across the thin film.   

 
Equation (2-10) approximates the film as being in its low-frequency, quasi-static limit, 
which is well satisfied for Lp,film > 2.5 tfilm [2], [13].  Further, to justify the assumption of 
1D heat conduction in the thin film requires b >> tfilm (by at least a factor of ~5; see Table 
3 of Ref. [2]), which is an additional condition beyond b << Lp,sub  << min(tsub, l) given in 
Section 2-1-1-A. 
 
The key to evaluating Eq. (2-10) for kfilm,^ is to determine , and several approaches 

have been taken.  The simplest case is a moderately-thick film (tfilm~100 nm or more) of 
low thermal conductivity on a large substrate (tsub~500 µm or more) of high thermal 
conductivity, measured in the preferred regime tfilm << b << Lp,sub  << min(tsub, l).  Here 
the thermal transfer function of the system (the temperature response of the heater line 
per unit heater power) can be modeled as the thermal resistance of the film, a real 
number, in series with the thermal impedance of the substrate, a complex number.  Thus, 
the in-phase signal ( ) is a response to both the substrate and the thin film, while the 

out-of-phase signal ( ) is only a response to the substrate (in Ref. [12] see Fig. 3 

and the corresponding discussion under Eq. 2). 
 

 
Fig. 2-5.  A typical 3w measurement performed on a 300-nm thick amorphous SiO2 thin film on top of a 
doped Si wafer at 310 K.  The points are experiments (blue) and calculations (black), respectively, while 
the straight lines are used to guide the eye.  The temperature drop across the SiO2 film (DTfilm = DTtot,x - 
DTsub,x) is determined by directly measuring the temperature of the heater line (DTtot,x) using Eq. 2-12, and 
calculating the temperature response of the substrate (DTsub,x) using the thermal model Eq. 2-13.  Both 
DTtot,x and DTsub,x are for the in-phase component (subscript x) of the 3w voltages. 
 
In the simple scenario shown in Fig. 2-5, in which there is only a single thin film on top 
of a thick substrate, we have  

.         (2-11) 
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Here DTtot,x is the amplitude of the total temperature difference across the whole system, 
from the heater line to some far-field T¥, which can be determined from the 1st harmonic 
voltage, , and the in-phase component of the 3rd harmonic voltage, , as [1], 

[14] 

.         (2-12) 

The minus sign in Eq. (2-12) arises because there is a 180° phase difference between the 
1w and 3w signals, such that the lock-in amplifier will report  as a negative 

number. 
 
It is generally not considered practical to directly measure DTsub,x, although in principle 
this could be achieved by incorporating a second metallic thermometer line aligned 
directly beneath the upper heater line.  Instead, in this measurement regime a common 
practice is to calculate the magnitude of the temperature difference across the substrate 
alone as 

,        (2-13) 

where b and l are the half width and length of the heater line, Q is the Joule heating 
power applied to the heater, h » 0.923 is a constant [15], [16],  is the 

penetration depth defined in Eq. 2-1, and ksub is the thermal conductivity of the substrate 
which itself can be determined by analyzing the measured  data with the slope 

method (Section 2-1-1).  Once ksub is known, the thermal diffusivity can be calculated as 
, where Csub of a film is generally well approximated by its bulk handbook 

value, at least for characteristic lengths down to ~10 nm (See Appendix G). 
 
This solution for bulk samples (Eq. 2-13) reminds us of the thermal resistance of a 
cylindrical shell with inner and outer radii ri and ro [17], 

,         (2-14) 

where the 2 in the denominator is for a full cylinder, and would become a 1 for a hemi-
cylinder.  The comparison between Eqs. 2-13 and 2-14 suggests that we may visualize the 
classic 3w problem as a modified cylindrical heating problem with ri»b and ro»Lp , the 
latter of which is tunable by the heating frequency [2].  
 
Example 2-1: Beginning with the results from Example 1-1 for the magnitudes of the 1w 
and 3w voltages, derive Eq. 2-12. 
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Solution: 
Recall the 1w and 3w components of voltage from Example 1-1: 

 

where  is the amplitude of the current.  Converting everything to in-phase rms values, 
which are conveniently recorded by lock-in amplifiers: 

. 

Note here the driving current does not have an out-of-phase component, and thus 
. 

Cleaning up, 

 

Finally we arrive at 

. 

Since the temperature coefficient a for most metals is on the order of 10-3 K-1 and 
temperature oscillations 1-10 K, we neglect the 2nd term on the right hand side, and 
obtain 

, 

which is Eq. 2-12.  
 
Another common measurement scenario is the shown in Fig. 2-6, in which the film of 
interest is sandwiched within a more complicated stack.  Here a differential 3w method 
[7], [18] is recommended to extract the thermal resistance of the film of interest.  In this 
case, we prepare two samples, A and B, with nominally identical configurations and 
heater patterns, except that sample A includes the thin film of interest while sample B 
does not.  Applying the same Joule heating to both, we can extract the temperature 
difference across the thin film of interest as 
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Fig. 2-6.  A typical differential 3w measurement performed on two stacks, which are nominally identical 
except for the film of interest incorporated within Sample A.  The points are experiments, while the straight 
lines are used to guide the eye.  Here the basic stack in Sample B includes a 28 nm-thick top SiO2 layer, a 
300nm-thick bottom SiO2 layer, and a doped Si substrate.  The film of interest in Sample A is a 3 nm-thick 
graphene layer [18], sandwiched between SiO2 layers of the same 28 nm and 300 nm thicknesses as stack 
B.  DTA and DTB are related to the measured 3w voltages using Eq. 2-12.  Note that for this sample, DTfilm = 
DTA - DTB is dominated by the thermal contact resistances between graphene and top/bottom oxide layers, 
instead of the thermal resistance of the graphene layer itself.  Measurement temperature T¥= 310 K. 
 

,         (2-15) 

where  and  are the amplitudes of the temperature oscillations of the heater lines 
in the two samples, both of which can be obtained using Eq. 2-12 by measuring the 1st 
and 3rd harmonic voltages of samples A and B. 
 

 
Fig. 2-7  Justification of one dimensional (1D) heat transfer.  (a) Three key length scales of the problem.  
(b) Visualization of the isotherms and flux lines using a 2D FEM simulation, approximating the substrate as 
an isothermal boundary condition.  (c) Convergence of the actual thermal resistance to the ideal 1D 
resistance, Rth,FEM/ Rth,1D, as a function of the dimensionless group 2b/tox.  Typical expected values of these 
parameters in the real experiments: 2b = 3 µm, tetch = 60 nm, tox = 300 nm. 
 

5.5	

6	

6.5	

7	

100	 1000	 10000	100 1000 10000 
5.5 

6.0 

6.5 

7.0 

Driving Frequency,  f  [Hz] 

Te
m

pe
ra

tu
re

 R
is

e 
[K

] 
ΔTA 

(measured) 

ΔTB 
(measured) 

film  
of interest 

Sample A 

Sample B 

ΔTfilm = ΔTA – ΔTB 

ΔTA 

ΔTB 

ΔTfilm 

sandwiching 
film 

only the 
sandwiching film 

ΔTfilm = ΔTA − ΔTB
ΔTA ΔTB

0.01

0.1

1

0.01 1 100

2b / tox

R F
EM

/ R
1D

tetch = 0

tetch = tox

tetch / tox = 0.1

tetch / tox = 0.2
0.1

1

0.01
0.01 0.1 1 10 100

2b
tetch.

tox

(a)

(b)

(c)



	 2-12	

The results presented in Fig. 2-6 also highlight two other aspects of the differential 3w 
method.  First, the differential thermal resistance contributed by incorporating a new thin 
film into a stack will in general involve two contributions, the conduction resistance 
through the film and the thermal contact resistance between the new film and the 
neighboring sandwich layers.  The thinner the film of interest, the more the latter will 
dominate, which was the case in Ref. [18].  Second, to better ensure 1D cross-plane heat 
flow through the film stack, the stack can be microfabricated as a mesa of width 2b 
aligned carefully to the heater line, which was accomplished in Ref. [18] by a self-aligned 
ion milling step, as depicted in Fig. 2-7 and discussed below. 
 
As an example of ensuring 1D heat transfer through a film stack, we analyze the 
sandwich structure (top SiO2 + graphene + bottom SiO2) in Ref. [18].  As indicated in 
Fig. 2-7(a), there are three important length scales in this problem: the heater width (2b), 
the thickness of the lower oxide (tox), and the etching depth (tetch).  Ideally, to ensure 1D 
heat transfer through the sandwich structure we would like 2b >> tox or tetch = tox.  In 
practice, however, we are constrained by the graphene flake size and concerned about the 
time and cost of the ion milling.  To provide a quantitative basis for the inevitable 
compromise between ideality and reality, we simulated various nonideal structures using 
a 2D finite element method (COMSOL FEM).  To mimic the real experiment, we use a 
flux boundary condition to represent the heater.  We then apply a temperature boundary 
condition on the lower surface of the bottom oxide to represent the transition to the high-
k substrate, and set the other boundaries to be adiabatic.   
 
Figure 2-7(b) shows the isotherms and adiabats for a representative structure, which 
confirms the 1D heat transfer qualitatively.  Note that we exaggerated the thickness of 
graphene for clarity.  To quantify these non-ideality results, in Fig. 2-7(c) we normalize 
the real thermal resistance (RFEM) by the ideal 1D resistance, , and plot it 

as a function of a dimensionless group 2b/tox.  We show curves for four different etch 
depths, from zero to complete etching through the bottom oxide.  The first feature of Fig. 
2-7(c) is that RFEM gradually converges to R1D as 2b/tox  increases, as expected.  The 
second feature is that as the etching depth increases, the convergence becomes faster.  
Based on this analysis and considering the experimental practicalities, we fixed the two 
adjustable microfabrication parameters to be 2b = 3 µm and tetch = 0.2×tox, which according 
to Fig. 2-7(c) introduces only a modest 4.5% error as compared to assuming purely 1D 
heat transfer through the sandwich structure.  
 
2-2-2.  In-plane 
 

R1D = tox (kox ⋅2b)
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As compared to a cross-plane measurement, measurements of a film’s in-plane thermal 
conductivity are more challenging because of the potential for very large parasitic heat 
leakage from the film of interest into the substrate and/or the adjacent layers.  An obvious 
strategy to avoid this problem is to etch out the substrate underneath the film, though at 
the cost of much more challenging microfabrication.  An alternative approach is to keep 
the substrate and thus live with the parasitic heat leakage, shifting the challenge to the 
measurement sensitivity and heat transfer analysis.  In this section we discuss six 
techniques, four suspended and two supported, based on these two philosophies. 
 
A.  Suspended microfabricated-device method 

 
Fig. 2-8.  (a) Schematic of the suspended microfabricated-device method, repeated from Fig. 1-3 for 
convenience.  (b) Corresponding simplified thermal circuit.  The node marked THtr experiences the Joule 
heating of the island’s serpentine heater plus that of the two long current leads.  The latter term is an 
approximation which is revisited and improved in Eq. 2-20.  RBeam represents the parallel combination of 5 
individual supporting legs. 
 
This method achieves excellent simplicity in its model for heat transfer through the 
sample, but suffers from the complexity of microfabrication (recall Fig. 1-1). It was 
initially developed for nanotubes and nanowires [19]–[21], and later applied to thin films 
(e.g. graphene [22]).  Another merit of this technique is that it does not assume diffusive 
transport through the suspended sample, which makes this method applicable to study 
ballistic thermal transport. 
 
To illustrate the measurement concept, here we analyze the schematic of Fig. 2-8(a) using 
a simplified thermal circuit, as shown in Fig. 2-8(b).  In this thermal circuit, we lumped 
the Joule heating of the serpentine heater (QHtr) inside the heating island with that of the 
two long current leads (2QLead) outside the island.  This crudely approximates all of the 
Joule heating in each of the two current leads QLead = , where Re,Lead is the 

electrical resistance of a single metal lead, as if it were localized at the heating island, an 
approximation which is revisited briefly below. 
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We first look at the thermal path connecting the heating island to the ambient through the 
five long beams, and obtain 

,         (2-16) 

where RBeam is the total (parallel) thermal resistance of the five long beams supporting the 
heating island, Q1 is the corresponding heat flowing through this path, and THtr and T¥ are 
the temperatures of the heating island and ambient, respectively. 
 
We next analyze the thermal path from the heater island to the sensing island, and sensing 
island to the thermal ground, and obtain 

,         (2-17) 

where RSampl is the thermal resistance of the sample, Q2 is the corresponding heat flowing 
through this path, and TSens is the temperature of the sensing island.  Note here we assume 
RBeam is the same for both heating and sensing islands, because of the identical design for 
the microfabrication. 
 
Finally, by energy conservation, we have 

.         (2-18) 

 
Combining the above equations, we arrive at 

.      (2-19) 

Here everything on the right hand side is known: the temperatures can be measured by 
the four-probe resistance thermometry and the Joule heating can be calculated by 

 
and .  Note also that RBeam has canceled out. 

 
An improved analysis [23], [21] takes into account the fact that the Joule heating in the 
current leads of the heating island is distributed instead of lumped.  This updates Eq. (2-
19) to  

,      (2-20) 

which is the recommended form. 
 
The derivation above assumes that the radiation and convection losses from the 
suspended samples are negligible, which, however, is not always ensured.  Although for a 
measurement conducted in a cryostat with vacuum level better than 10-5 Torr (see 
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Appendix E), the convection loss can be safely neglected, the radiation loss may require 
some care (see Section 3-1-1). 
 
Another key assumption of this technique is the spatial uniformity in temperatures of the 
heating and sensing islands.  This is ensured by thermal design for a small generalized 
Biot number, which requires 

,        (2-21) 

where Risland is the internal thermal resistance of the heating and sensing islands. 
 
There are several practical challenges in implementing this technique.  First, it requires 
some method to place a sample between the heating and sensing islands.  Common tricks 
include micromanipulation of nanostructures [23], [24], drop-casting from a solution 
containing suspended nanostructures [23], in-situ growth of nanostructures on fabricated 
microdevices [25], and integrated microfabrication of microdevices and nanostructures 
[26].  Second, the thermal contact between the sample and the two islands also requires 
extra attention, and there are several methods to address this issue [19], [21], [23], [27]. 
 
 
B.  Distributed self-heating method 
 

 
Fig. 2-9.  (a) Schematic of the distributed self-heating method, repeated from Fig. 1-4 for convenience.  (b) 
Illustration of the data processing.  The thermal conductivity of a suspended thin film or nanotube/nanowire 
can be extracted from the slope m of a plot (schematic points) of electrical resistance vs. heating power (Eq. 
2-25). 
 
This technique requires the sample to be electrically conducting with good ohmic 
contacts and a stable temperature coefficient of resistance.  It also requires suspending the 
thin film or nanostructure, although the microfabrication may be somewhat simpler than 
the other suspended techniques.  As can be seen from Example 1-2 and below, the heat 
transfer model of this technique relies on Fourier’s law, thus making it inapplicable to 
study ballistic thermal transport.   
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For a uniformly distributed volumetric heat source in a long filamentary sample, recall 
the average temperature across the sample obtained in Example 1-2: 

,         (2-22) 

which corresponds to an equivalent thermal resistance of the thin film, 

,         (2-23) 

where k, L and Acr are the thermal conductivity, length, and cross sectional area of the 
thin film and Q = IV is the Joule heating power.  Note the factor of , which arises 
because of the distributed heating and temperature averaging.   
 
Thus, the thermal conductivity of the thin film is 

.        (2-24) 

As shown schematically in Fig. 2-9b, after measuring the I-V curves of the suspended 
thin film, we plot the electrical resistance ( ) of the thin film as a function of the 

Joule heating power.  Importantly, these I-V curves are deliberately driven into a regime 
where the self-heating is substantial, in contrast to standard practice for resistance 
thermometry (e.g. as depicted below in Fig. 2-14b).    
 
Finally, the thermal conductivity of the thin film can be extracted as 

,         (2-25) 

where m and Re,0 are the slope and intercept of the Re - Q plot, and  is the temperature 
coefficient of the thin film.   
 
Several important aspects including the radiation losses, the contact and substrate 
spreading resistance, and the placement of voltage probes, require careful thermal design 
and are discussed elsewhere [2]. 
 
C.  T-bridge method 
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Fig. 2-10.  (a) Schematic of the T-bridge method, repeated from Fig. 1-5 for convenience.  (b) Illustration 
of the data processing, which is very similar to that of Fig.  2-9.  Here the thermal resistance of the 
distributed sensing wire (gold structure in (a)) must be known, and slope of the R-Q plot can be related to 
the thermal resistance of the suspended thin film or nanotube/nanowire (green structure in (a)) using Eq. (2-
29). 
 
Some filamentary samples cannot be directly measured using the distributed self-heating 
method because they lack the necessary electrical properties identified above.  In such 
cases, a related measurement bridges the sample across the midpoint of a separate sensing 
wire made of a suitable metal, forming a “T” shape (Fig. 2-10a) [28], [29].  As long as 
the thermal resistances of the sample ( ) and sensing wire ( ) are 

comparable (within a factor of ~10; see below), the spatially-averaged temperature rise of 
the sensing wire is sensitive to the thermal conductance of the sample.  Recently, this T-
bridge method has been extended to measure the thermal conductivity of 2D materials 
[30], [31]. 
 
To analyze this quantitatively, recall the modified parabolic temperature profile obtained 
in Example 1-3, 

,     (2-26) 

where .   

 
Averaging temperature along the sensing wire gives  

.        (2-27) 

Using the relationship between the electrical resistance of the sensing wire and the 
temperature, , with , we can extract the key parameter  

from the slope of the Re-Q plot (Fig. 2-10b): 

V

I

T∞

T∞
(a)

Joule Heating Power, QEl
ec

tri
ca

l R
es

is
ta

nc
e,

 R
e

Re,0

m

(fixed T∞)

(b)

T∞

T∞T∞

Heater/Sensor

Rsampl RHtr = L kHtrAcr( )

T x( ) = T∞ + Q8 RHtr − x
L 2

⎛
⎝⎜

⎞
⎠⎟

2

+ γ
1+ γ

x
L 2

+ 1
1+ γ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

γ = RHtr 4Rsampl( )

T = T∞ +
1
48QRHtr 1+

3
γ +1

⎛
⎝⎜

⎞
⎠⎟

Re = Re,0 +αRe,0ΔT ¥-=D TTT γ



	 2-18	

,         (2-28) 

where m and Re,0 are the slope and intercept of the Re-Q plot.  Thus, the thermal 
resistance of the sample is 

.        (2-29) 

 
It can be shown [29] that the sensitivity (defined later in Eq. 4-4) of 	to	changes	 in	
Rsampl	is		

,         (2-30) 

which peaks at g = 1 and falls off for both large and small g, with tolerable sensitivity 
only in the range .   
    
The derivation presented here assumes negligible surface heat losses by radiation and 
convection, the sample is perfectly centered at the midpoint of the sensing wire, and the 
sample diameter or width is small compared to the sensing wire length.  The limits of 
these assumptions have been addressed in the primary literature [29], [31]. 
 
 
D.  Central-line heater method 
 
 

 
Fig. 2-11.  Schematic of the central-line heater method, repeated from Fig. 1-6 for convenience.  The 
second metal line (i, v) is strictly for thermometry, not heating. 
 
The central-line heater method is depicted in Fig. 2-11.  This scheme has one of the 
simplest heat transfer models, but correspondingly imposes high demands on 
microfabrication to suspend the thin film and create a heater line at the center of the 
suspended film. 
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As shown in Fig. 2-11, assuming perfect symmetry we can obtain the thermal resistance 
of the half of the thin film between the heater and one of the banks of the trench: 

,         (2-31) 

where Qhtr is the Joule heating applied through the central heater line, and the prefactor  
accounts for the fact that half of the Joule heating flows to each side of the heater.  THtr 
and Tbank are the temperatures of the central heater line and the sensor on the bank of the 
trench, respectively, measured using four-probe resistance thermometry. 
 
Note that Eq. 2-31 does not make any assumption about the thermal transport, diffusive 
vs. ballistic, so it applies to both regimes.   Assuming diffusive transport, knowing the 
geometry of the film we can extract the thermal conductivity 

,         (2-32) 

where L is the length of the sample spanning the trench from bank to bank and Acr is the 
cross-sectional area of the film. 
 
As in the distributed self-heating method, this central-line heater method requires 
attention to issues such as radiation losses, thermal contact and substrate spreading 
resistances, 2D spreading effects, and placement of voltage probes.  See Section 5 of Ref. 
[2]. 
 
E.  Variable linewidth 3w method 
 

 
Fig. 2-12.  Concept of the variable linewidth 3w for thin film measurement.  (a) When the heater linewidth 
is much larger than the film thickness (b >> t), the heat transfer is most sensitive to the film’s cross-plane 
thermal conductivity (kfilm, ^).  (b) When b < t, the heat transfer becomes sensitive to the in-plane thermal 
conductivity (kfilm, //) as well. 
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In Section 2-2-1, we saw how to use a 3w method to measure the cross-plane thermal 
conductivity of a film by assuming 1D heat conduction across the thin film.  Here we 
relax this assumption, and thereby extend the 3w method to measure the in-plane thermal 
conductivity of thin films as well [7]. 
 
The approximation of 1D heat conduction through the film overestimates the cross-plane 
thermal conductivity, since in actual experiments it mistakenly treats the lateral heat 
spreading near the heater edges as vertical heat flow, corresponding to an erroneously 
large k^.  This edge effect exists even for a wide heater on top of a thin film (Fig. 2-12a), 
but is negligible for b >> t. 
  
Solving the 2D heat diffusion equation for more general material systems allowing 
anisotropic properties of both thin film and substrate (aligned with the principal axes), 
Borca & Chen were able to take into account this lateral heat spreading effect [7].  For 
the typical scenario in which the thermal conductivity of the substrate is much larger than 
that of the thin film, they found a convenient correction factor: 

,         (2-33) 

where kfilm,^ is the actual cross-plane thermal conductivity of the film, k1D is the apparent 
measured cross-plane thermal conductivity under the assumption of 1D heat conduction 

across the thin film, and  can be viewed as the (square root of the) 

ratio between the in-plane and cross-plane thermal conductance.  Equation (2-33) 
requires for error of 3% or less, which is almost always the case though this also 

implies limited sensitivity to kfilm,//.  A more general expression for any x is derived in 
Ref. [7], which involves numerical evaluation of an integral. 
 
Equation (2-33) offers a way to measure both kfilm,^ and kfilm,// using the 3w method.  First, 
as shown in Fig. 2-12(a), a wide heater with x << 1 is used to extract k^, since in this 
scenario the 1D approximation is well justified.  Next, a narrow heater (Fig. 2-12b) with 
larger x is used to extract kfilm,// using Eq. 2-33, using the kfilm,^ obtained earlier.  Because 
this approach is always less sensitive to kfilm,// than kfilm,^, we recommend that more than 
two different heater widths should be included in the study, the narrowest of which 
should reach x ³ 3. 
 
F.  Heat spreader method 
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Fig. 2-13.  Fitting algorithm to extract the in-plane thermal conductivity of encased graphene using the heat 
spreader method of Fig. 1-8 [32].    
 
The heat spreader method is another technique that relaxes the constraints on 
microfabrication but adds complexity in heat transfer analysis. 
 
Recall Section 1-6 and the schematic of the heat spreader method shown in Fig. 1-8.  The 
in-plane thermal conductivity of the sandwiched thin film can be obtained by fitting 
measured experimental quantities (the joule heating of the heater and temperature of the 
three sensors) to a suitable heat transfer model, which also involves various other known 
geometries and thermal properties.  Here we discuss two such models. 
 
Recognizing that the thermal conductivity of the Si substrate is very high such that it may 
approximate a perfect heat sink, the simplest thermal model is to treat the thin film 
(graphene in Fig. 1-8) as a fin, where the effective “convection” coefficient heff represents 
the vertical conduction through the lower SiO2 layer into the Si heat sink.  The interfacial 
contact resistances may also be important.  Thus, 

                   (2-34) 

where kBotOx and tBotOx are the thermal conductivity and thickness of the lower oxide layer, 
and the two  terms are the specific contact resistances (with SI units m2K/W) from 
graphene-to-oxide and from oxide-to-silicon, respectively.   
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Using textbook fin theory (see Example 1-4), we estimate the characteristic fin length, 

,           (2-35) 

where k// is the in-plane thermal conductivity, and Ac and P are the cross sectional area 
and “wetted perimeter” of the graphene fin.  For a graphene flake of width w and 
thickness tgr, we have   and  rather than , because the flake only 

conducts heat out through its lower face. 
 
The textbook fin temperature profile is !(#) = !& + !( ∙ exp	(−/ ∙ #).  Thus, by fitting 
this profile to the experimental T(x) profile measured using the three temperature sensors 
(Fig. 1-8), we can extract the fin length , and thus the thermal conductivity k// from 
Eq. (2-35). 
 
However, this textbook 1D fin treatment assumes the fin length  to justify Eq. 

2-34, which might not be satisfied in real experiments.  For example, in our 
measurements of the thermal conductivity of encased graphene [32], the 12-layer-thick 
graphene sample has a fin length of  which is comparable to the thickness of 

the lower oxide layer of , and thus violating the assumption .  

Here the parameters used for the estimate above are: kgr,// = 92 W/m-K [32], kBotOx = 1.4 
W/m-K [32], tgr = 4.1 nm [32], tBotOx = 320 nm [32],  m2-K/W [18], and 

 m2-K/W [15]. 

 
Although in our experience this fin model does not usually lead to a highly accurate 
result, it nevertheless gave good insight to guide our experimental design.  For example, 
recognizing the even smaller  expected for thin graphene samples with fewer layers, 
we focused on sharpening the resolution of the e-beam lithography to reduce the center-
to-center distance between the adjacent T sensors from 740 nm to 350 nm. 
 
Due to the aforementioned shortcomings with the 1D fin model, to achieve satisfactory 
accuracy in Ref. [32] we found it necessary to use a 3D finite element method 
(COMSOL) to simulate additional details of the structure.  As shown in Fig. 2-13, we 
treated the unknown k of the graphene layer as an adjustable parameter, and solved the 
3D FEM model iteratively to find the k that gives the best agreement between simulated 
and measured quantities (the temperature rise at the three sensors, normalized by heater 
power).  This non-linear least-squares fitting process was automated by using MATLAB 
to interface directly with COMSOL.  We validated this scheme by two control 
experiments [32]: one experiment removing the graphene film from Fig. 2-13, and the 
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other replacing the graphene film with a 38-nm thick Pt thin film.  These two control 
experiments agreed with other measurements using different methods to better than 1% 
(3w) and 5% (Wiedemann-Franz Law, Section 3-3), respectively, thus confirming the 
accuracy of this heat spreader + 3D FEM scheme. 
 

 
Fig. 2-14.  Schematic electrical circuit to apply heating power and measure the thermal response of (a) 
heater and (b) temperature sensors in the heat spreader method.  Here (a) is a DC method while (b) is AC.   
 
The electrical connections for the heater and the temperature sensors are shown in Fig. 2-
14.  The heater is driven by a DC current source (Keithley 6221) and detected by a nano-
voltmeter (Keithley 2182A).  Each thermometer is driven and detected at AC by its own 
lock-in amplifier (SR830 and/or SR850), using small currents to ensure negligible self-
heating. 
 
 
2-3.  Suspended 1D structures: Nanotubes and nanowires 
 
The suspended microfabricated-device method (Section 2-2-2A), the distributed self-
heating method (Section 2-2-2B), and the T-bridge method (Section 2-2-2C) for the in-
plane thermal conductivity measurement of thin films can also be directly applied to 
measure nanotubes and nanowires.  For these three techniques, we simply refer the 
readers back to Section 2-2-2 (A-C) for details.  Note that the thermal contact between 
nanotubes / nanowires and the measurement platforms requires extra care, since now it is 
in theory a line contact, which is even worse than the plane contact in the thin film 
scenario. 
 
The central-line heater method has not been applied for nanotubes / nanowires 
measurements for the obvious reason that the electrodes in Fig. 2-10 and 2-11 cannot be 
placed on top of a single 1D structure.  Nor to our knowledge has the heat spreader 
method, though in principle it might be viable for a large diameter MWCNT with very 
high k. 
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A variation of the 3w method (Section 2-1-1) can also be used to measure nanotubes and 
nanowires, with the heat transfer model modified to describe a suspended 1D structure.  
We will now discuss this in more detail. 
 
A.  3w method for suspended 1D structures 
 
This technique requires the sample to be electrically conducting, or to be coated with an 
electrically conducting layer if the sample itself is a poor conductor.  By varying the 
frequency of the driving current, this technique can extract both the thermal conductivity 
and the heat capacity.  Note that this technique can be viewed as the periodic version of 
the distributed self-heating method as described in Section 2-2-2B. 
 
The steady periodic solution for the temperature response of a 1D structure subject to a 
spatially distributed periodic heat source was presented by Lu et. al. as a series solution 
[33], and subsequently as a closed-form solution by Dames et. al. [3].  The latter also 
gave an approximate lumped solution motived by the similarity of the full solution to a 
first-order RC system, which is surprisingly accurate and thus used here for simplicity. 
 
These solutions can be divided into low and high frequency limits depending on the 
dimensionless frequency , where  is the angular frequency of the driving 
current and  is the diffusion time across the nanotube / nanowire defined as , 
with D as the diffusivity of the nanotube / nanowire.  To be consistent with the 
discussions throughout this book, here L is the full length of the wire, whereas L 
represents the half length of the wire in Ref. [3]. 
 
In the low frequency limit ( ) and using the in-phase component of the 3w voltage 
( ), Ref. [3] gives the thermal conductivity of the 1D structure as 

,         (2-36) 

where L is the length of the wire, and other quantities are as defined following Eq. 2-2.  
As in Eq. (2-12), the minus sign in Eq. (2-36) is due to the 180° phase difference between 
the 1w and 3w signals, and will be cancelled by the negative value of . 

 
The heat capacity is also readily obtained.  For example, in the high frequency limit (

) and using the out-of-phase 3w voltage ( ), Ref. [3] gives C as 

.        (2-37) 
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2-4.  Liquids, biological tissues, and other soft matter: Supported 3w method  
 

 
Fig. 2-15.  Supported or bi-directional 3w method to measure k of biological tissues and other delicate 
samples.  (a) The “sensor” (substrate + heater + insulating layer) is first calibrated for ksub using a classic 
3w method (Section 2-1-1).  Harsh microfabrication processess are only used when fabricating this 
substrate, but not applied to the delicate sample.  (b) The sample is then placed on top.  Now the heat 
dissipation from the heater has two parallel paths, which knowing ksub can be analyzed to extract ksample.   
 
In the traditional 3ω method the substrate functions as both sample and mechanical 
support for the heater line.  This is inappropriate for liquids, biological tissues, and other 
soft matter, because depositing the 3ω heater line requires harsh microfabrication which 
is incompatible with samples which are soft, liquid, or otherwise chemically sensitive.  
For such delicate samples, a “supported” or “bi-directional” 3w method is helpful, and 
has been applied to measure liquids [34]–[37] and biological samples including tissues as 
thin as 100 µm [38] and potentially even single cells [39]. 
 
As shown in Fig. 2-15(a), a metallic heater line is first deposited on top of a rigid 
inorganic substrate of low k, e.g. a glass microscope slide, and coated with a thin 
dielectric isolation layer.  The thermal conductivity of this substrate (ksub) is calibrated 
using the classical 3w method (Section 2-1-1).  For example, in the ideal intermediate 
frequency limit [b << Lp << min(tsub, l)], ksub can be obtained from Eq. 2-2 using the slope 
method: 

.       (2-38)   

Next, a soft biological sample is placed on top of the heater line, in intimate contact with 
the dielectric isolation layer [Fig. 2-15(b)].  Approximating the substrate and the sample 
as two parallel thermal impedances (the “boundary mismatch approximation,” BMA), we 
obtain 
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Thus, combining Eqs 2-38 and 2-39, the thermal conductivity of the biological sample 
can be extracted.  Note that another advantage of the supported 3w approach is that the 
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sensor (Fig. 2-15(a)) can be reused for multiple samples, whereas the traditional 3w 
approach requires microfabrication on every sample.   
 
The BMA corresponds to neglecting heat transfer between the sample and substrate 
except at the heater line itself, and is widely used [34]–[37] because it greatly simplifies 
the analysis of experimental data as compared to solving the fully coupled heat 
conduction problem.  The errors in the BMA have been discussed in Ref. [38], who found 
that Eq. 2-39 becomes exact in the ideal intermediate limit [b << Lp  << min(tsub, l)] 
regardless of the diffusivity contrast between the substrate and the sample.  The errors 
corresponding to the assumption of low frequency limit are analyzed in Figs. 4 and 7 of 
Ref. [38].   
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Chapter 3.  How to prepare for a successful experiment? 
 
The general who wins the battle makes many calculations before the battle; the general 
who loses makes but few calculations beforehand.  Thus do many calculations lead to 
victory, and few calculations to defeat: how much more no calculation at all! 

-- Sun Tzu, The Art of War 
 
In this chapter we present various aspects of the experimental process which are usually 
omitted from a journal paper but which experience has shown are important for 
conducting a successful experiment.  This includes thermal design to minimize parasitics, 
getting oriented through “pre-lab” estimates, and verification by control experiments and 
sanity checks.  The issues are discussed in context of several of the techniques already 
introduced in earlier chapters. 
 
3-1.  Thermal design to make parasitics negligible 
 

 
Fig. 3-1.  Heat spreader method as an example to highlight some key considerations in a typical thermal 
design, which will be discussed in detail in sections 3-1-1 to 3-1-4.  (a) Schematic of the sample, simplified 
from Fig. 1-8 using a symmetry plane.  In addition, the chip carrier (CC) and the cold figure (CF) are also 
illustrated.  Note that the µm -scale heater pattern is exaggerated to show the finest features.  (b) An 
approximate lumped resistor-network overlaid on top of the cartoon in (a).  Note that some of the 
thicknesses are distorted.  (c) A more advanced 2D FEM analysis shows more details, e.g. the isothermal 
contours inside the top and bottom oxide layers.  With its advantage of revealing physics in more intuitive 
algebraic forms, the analysis in this chapter is based on the approximate thermal circuit in (b). 
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Table 3-1.  Geometric parameters and thermal properties used in Section 3-1 for the example of the heat 
spreader method (Fig. 3-1) [1].   
 

Parameters Typical value Units 

Thickness of top  
and bottom oxide layers 

 0.025 

µm 
 0.32 

Length and half width of heater l 10 
b 0.25 

Width of graphene flake w 10 

Thickness of graphene flake tgr 
0.69 (bi-layer) 

nm 
7.25 (21-layer) 

Thermal conductivities of top  
and bottom oxide layers 

 0.95 

W/m-K  1.43 

Thermal conductivity of graphene flakes kgr,// 
51 (bi-layer) 
970 (21-layer) 

TBR between gr. and ox,  
and between ox and Si 

!",$%&'("  9.5 
10-9  
m2-K / W !",'(&*+"  20 

Characteristic fin length  
calculated using Eq. 3-2 b-1 

0.094 (bi-layer) 
µm 

1.3 (21-layer) 
 
In an ideal experiment we would guide the heat to flow exclusively through the 
nanostructure of interest, but in reality there are various other series and parallel 
pathways.  To be able to neglect those parasitics requires careful thermal design. 
 
Using the heat spreader method of Sections 1-7 and 2-2-2F as a concrete example (Fig. 3-
1), we discuss the thermal design to ensure negligible parasitics.  We take advantage of 
the symmetry of the problem (Fig. 1-8) to analyze only half of the sample, as shown in 
Fig. 3-1a.  More details about how the sample is mounted to the cold finger of the 
cryostat through a chip carrier are also sketched in Fig. 3-1a.  Here to depict the finest 
features on the same cartoon we have greatly exaggerated the size of the µm-scale heater 
pattern and thin film thicknesses.   
 
Recall the basics from Section 1-7.  The metallic line heater generates Joule heat at a rate 
QHtr, which flows vertically through the top oxide and then spreads laterally through the 
high-k graphene layer, while simultaneously leaking vertically through the bottom oxide 
layer, and finally dissipates through the Si substrate and chip carrier into the cold finger 
which is set at a specific temperature (TCF » T¥) for measurement. 
 
A corresponding thermal circuit describing the physics above is shown in Fig. 3-1b.  The 
key resistor of interest is approximated as a fin,  

tTopOx

tBotOx

kTopOx

kBotOx
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,        (3-1) 

with a characteristic fin length 
,           (3-2) 

in which kgr,// is the thermal conductivity, and Acr and P are the cross sectional area and 
“wetted perimeter” of the graphene flake.  For a flake of width w and thickness tgr, we 
have   and  because the flake only conducts heat out through its lower 

face.  Recalling Eq. 2-34, we have the effective “convection” coefficient,  

                  (3-3)    

where kBotOx and tBotOx are the thermal conductivity and thickness of the lower oxide layer, 
and the two  terms are the specific contact resistances (with SI units m2K/W) from 
graphene-to-oxide and from oxide-to-silicon, respectively.  Evaluating Eq. 3-3 using the 
parameters from Table 3-1, we find heff = 4.0´106 W/m2-K.  Likewise, evaluating Eq. 3-2, 
we find b-1 = 94 nm and 1.3 µm for a bi-layer and a 21-layer graphene flake, respectively. 
 
Ideally we desire the thermal circuit to only contain Rcond’n,gr-Si.  However, as indicated in 
Fig. 3-1(b) the practical thermal circuit also includes the following nonideal resistors: 
Rrad’n,Htr and Rrad’n,TopOx correspond to radiation losses from the top surfaces of the line 
heater and sample surface, respectively;  Rcond’n,OxUnderHtr is conduction through the 
portion of the top oxide which is underneath the line heater; similarly Rcond’n,TopOx 
represents the path through the top oxide above the graphene flake to the exposed free 
surface; and  Rcond’n,Si-CF represents the thermal pathway from the Si substrate to the cold 
finger.   
 
Although this lumped resistor network is a major simplification, it offers important 
physical insights to guide the first stage of thermal design.  On the other hand, more 
advanced analysis offers more details and more accurate results, but at the loss of 
simplicity in expressing the physics.  For example, a 2D FEM analysis assuming a perfect 
Si heat sink is shown in Fig. 3-1c, which shows clearly the temperature distribution inside 
the layers. However, this advanced FEM analysis is based on a numerical scheme with 
1000s of nodes, and cannot show the physics in more intuitive algebraic forms.  Thus, our 
analysis in the following will be based on the lumped thermal circuit in Fig. 3-1b. 
 
To ensure that the Joule heat QHtr is most sensitive to Rcond’n,gr-Si which includes the 
thermal conductivity of the graphene flake (see Eq. 3-1), in the following we will test 
each of the nonideal thermal resistors against Rcond’n,gr-Si one by one: the radiation losses 

Rcond 'n,gr−Si =
1

heff Pkgr ,/ /Acr

β −1 = kgr ,/ /Acr / heff P

Acr = w ⋅ tgr wP =

heff = tBotOx / kBotOx + Rc,gr−ox
'' + Rc,ox−Si

''( )−1 ,

Rc
''
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in Section 3-1-1, the effects of the thermal resistance of the top oxide in 3-1-2, and the 
design of the metal heater pattern and the thermal contact to the cold finger in 3-1-3.  
Each such test focuses on a single nonideality and ignores the others.  This approach is 
reasonable and self-consistent because only once all nonidealities are shown negligible 
can the entire design be considered a success.  We also discuss the cross-cutting topic of 
designing experiments to be sensitive to the expected range of the measurand in Section 
3-1-4. 
 
3-1-1.  Radiation losses 
 
Here we assume the measurement is conducted in a standard cryostat at high vacuum (< 
10-5 Torr), thus making negligible the heat losses through convection and air conduction.  
We will revisit the question of convection losses and vacuum level in Appendices B and 
E. 
 
As indicated by labels 1 and 2 in Fig. 3-1, we consider radiation losses from the top 
surface of the sample and from the microfabricated heater.  The goal is to ensure that 
nearly all of the Joule heat dissipated in the heater line is conducted downward into the 
SiO2/graphene/SiO2/Si sample stack, with negligible losses by radiation. 
 
We first check the radiation loss by the top surface of the sample (label 1 in Fig. 3-1).  To 
ensure it is small compared to the conduction through the sample stack, we require 

,         (3-4) 

in which 

,         (3-5) 

where  is the effective top surface area of the sample, and   is a linearized 

radiative heat transfer coefficient (pg. 254 of Ref. [2]) 
,         (3-6) 

in which  is the emissivity of the sample, Wm-2K-4 is the Stefan-
Boltzmann constant, and Tavg the average of the temperatures of the sample and the 
ambient.  For a black surface at room temperature,  » 6.1 W/m2-K. 
 
We evaluate the effective top surface area of the sample as 

,          (3-7) 

Rrad 'n,TopOx ≫ Rcond 'n,gr−Si

Rrad 'n,TopOx =
1

hrad 'nAsurf

Asurf hrad 'n

hrad 'n = 4εσTavg
3

ε σ = 5.67 ×10−8

hrad 'n

Asurf = w ⋅β
−1
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which is well justified since  from Eq. (3-2) can be loosely understood as the 
characteristic in-plane distance over which the graphene heat spreader “feels” the effect 
of the heater. 
 
Substituting Eqs. 3-1 and 3-5 into 3-4, the criteria to neglect the radiative loss from the 
top surface of the sample becomes 

,          (3-8) 

which is extremely well satisfied based on the estimates above, with  » 6.1 W/m2-K 

and  W/m2-K.  

 
The analysis above assumes 

,         (3-9) 

and 
.         (3-10) 

We will confirm Eq. 3-10 in Section 3-1-4, and Eq. 3-9 now.  We have 

,         (3-11) 

where both resistors involve the same Asurf which has therefore cancelled out.  Using the 
parameters from Table 3-1, we find this ratio to be ~7.7´106, thereby confirming Eq. 3-9.   
 
We next check the radiation loss by the microfabricated heater (label 2 in Fig. 3-1a).  As 
shown in Fig. 3-1b, to ensure it is small compared to the conduction through the sample 
stack, we require 

.         (3-12) 

 
Using the linearized radiative heat transfer coefficient (Eq. 3-6), we have 

.         (3-13) 

 
Combining Eqs. 3-1 and 3-13, we have 

.        (3-14) 

 

β −1

 

heff
hrad 'n

≫1

hrad 'n

heff ≈ 3.9 ×10
6

 
Rrad 'n,TopOx ≫ Rcond 'n,TopOx

Rcon 'n,gr−Si ≫ Rcond 'n,Si−CF

Rrad 'n,TopOx
Rcond 'n,TopOx

=
1
hrad 'n

tTopOx
kTopOx

Rrad 'n,Htr ≫ Rcond 'n,gr−Si

Rrad 'n,Htr =
1

hrad 'n l ⋅b( )

Rrad 'n,Htr
Rcond 'n,gr−Si

=
w heff kgr ,/ /tgr
hrad 'n l ⋅b( )
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Using the bi-layer graphene sample as a conservative estimate, and the parameters from 
Table 3-1, we arrive at even for a black heater surface (,-.% =
1 ), which satisfies Eq. 3-12 extremely well.  This analysis also assumes 

, which we will confirm in Section 3-1-2. 

 
The analysis in this section (3-1-1) points towards a more general conclusion, that at 
room temperature and below, radiation losses in most cases are negligible for micro- / 
nano-scale thermal measurements.  This can be seen by comparing the room temperature 

 » 6.1 W/m2-K to a conductive heater transfer coefficient 

,          (3-15) 

where Lchar is a characteristic length of the sample.  Even for a thermal insulator such as 
fused SiO2 (k~1 W/m-K), and a very large Lchar » 1 mm, this  is still on the order of 
1000 W/m2-K, which is more than two orders of magnitude higher than .   
 
For high temperature (e.g. up to 1000 K) experiments however, the radiation loss may not 
be neglected since ℎ%2345 ∝ 728$9  (Eq. 3-6).  More discussion can be found in Appendix 
F. 
 
3-1-2.  Dielectric isolation and its thermal resistance 
 
In many of the electrothermal techniques, we microfabricate metal electrodes on top of 
the sample, flow current through them, and measure the corresponding voltages across 
the electrodes.  In these scenarios, any leakage of the electrical current from the metal 
electrodes to the sample may ruin the measurement.  Thus, it is crucial to ensure 
electrical insulation between the electrodes and the sample. 
 
One good example is the heat spreader method. As indicated by label 3 in Fig. 3-1a, 
because graphene is electrically conducting, we cannot directly fabricate the metal 
electrodes on top of it, but instead require an insulating layer between the electrodes and 
graphene.  Unfortunately, as shown in Fig. 3-1b, this electrically insulating layer also acts 
as an additional thermal resistor (Rcond’n,OxUnderHtr) in series between the metal heater line 
and the graphene heat spreader.  If knowing the temperature of the heater line is 
important for the experimental determination of graphene’s k, we require this dielectric 
series resistance to be negligible as compared to the graphene heat spreading resistor: 

.        (3-16) 

Rrad 'n,Htr Rcond 'n,gr−Si ! 2.4×10
5

Rcond 'n,OxUnderHtr ≪ Rcond 'n,gr−Si

hrad 'n

hcond 'n =
k
Lchar

hcond 'n

hrad 'n

Rcond 'n,OxUnderHtr ≪ Rcond 'n,gr−Si
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Assuming 1D heat transfer through the portion of the top oxide underneath the line 
heater, a treatment supported by the approximately parallel isotherms in that location in 
the FEM simulations of Fig. 3-1c, we have 

.        (3-17) 

 
Combining Eq. 3-1 and 3-17, we have 

.       (3-18) 

 
Using the parameters from Table 3-1, we find  for a bi-layer 

graphene sample, which satisfies Eq. 3-16.  On the other hand, for the 21-layer graphene 
flake we estimate , showing that Rcond’n,OxUnderHtr cannot 

always be neglected.  As a result, the actual model used in Ref. [1] excluded the 
temperature of the heater from the fitting.  
 
3-1-3. Design of thermal contacts and heater pattern: Minimizing artifacts of unintended 
background heating. 

 
Fig. 3-2.  Naïve (left column) vs. improved (right column) designs for line-heater and thermal contact in the 
heat spreader method of Fig. 3-1.  Top row: top views of the heater metallization, with typical line widths 
0.5 µm.  Bottom row: schematic 3-D view at low magnification, showing the thermal contact among 
sample (graphene on Si chip), ceramic chip carrier (CC), and copper cold finger (CF) at T¥.   (a) Long and 
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narrow current leads cause undesired Joule heating far from the graphene specimen, and thus a large 
background temperature rise which confuses interpretation of the local temperature measurements at the 
graphene.  (b) Improved design uses short and wide current leads to minimize this background heating.  (c) 
Poor thermal contact relying on vacuum grease between chip carrier and copper cold finger of a cryostat 
dominates the thermal circuit (see Table 3-2), and amplifies the temperature rise caused by the excessive 
background heating from (a).  (d) Improved design replaces the vacuum grease with thin indium foil and 
applies clamping pressure, both of which reduce thermal contact resistance between chip carrier and copper 
cold finger.  Combining the improvements from (b) and (d), the temperature rise artifact at the graphene 
due to background heating is reduced by at least two orders of magnitude.  (e) Lumped thermal circuit to 
show the heat transfer path from the sample to the copper cold finger.  The difference between (c) and (d) is 
represented in the thermal contact resistance between the chip carrier and the copper cold finger, RCC-CF. 
 
From the point of view of electrical measurements, four-probe measurements have the 
great advantage of being immune to the effects of lead resistance (see Appendix C).  
From the point of view of thermal measurements, however, the current-carrying leads 
(conventionally designated I+ and I-) still cause Joule heating, so some additional care is 
required to design the pattern of the heater and the thermal contacts properly when 
applying four-probe resistance thermometry for a thermal measurement. 
 
A representative example based on our experience with a heat spreader method [1] is 
shown in Fig. 3-2.  Our initial, and in hindsight naïve, design is shown in Fig. 3-2a,c.  
Note in Fig. 3-2a that the I+ and I- leads are thin and very long: a few mm.  These current 
leads result in substantial extra resistances in series with the central portion of the heater 
between the V+ and V- taps (each ~0.5 µm wide, on either side of the sample of width 
l»10 µm as shown in Fig. 3-1a).  These extra resistances of the long current leads cause a 
background of undesired Joule heating, the magnitude of which greatly exceeds the 
desired Joule heating in the 10 µm test section between the V+ and V- taps.  This 
background heating must dissipate out to the heat sink at T¥, and in doing so may cause 
substantial DC heating of the test section for reasons that have nothing to do with the 
thermal properties of the graphene itself.  
 
As indicated by label 5 in Fig. 3-1a, this problem is amplified if the thermal contacts of 
the sample mounting inside the cryostat are not well designed.  Figure 3-2c shows a 
typical configuration of a thermal measurement conducted inside a cryostat, and Fig. 3-2e 
shows its corresponding thermal circuit.  The DC heating must flow out to the bottom of 
the substrate (a silicon wafer), through silver paint into a ceramic chip carrier, and finally 
through a thin layer of high vacuum grease (Dow Corning) into a temperature controlled 
copper cold finger.  Estimates for each of these thermal resistances are given in Table 3-
2, which shows that the dominant resistance is the vacuum grease layer between the chip 
carrier and copper sample stage.  Coupled with the unnecessarily large background 
heating caused by the long thin current leads, this results in a “background” temperature 
rise which is spatially uniform on the scale of the graphene test sample.  As we shall see 
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next, this led to large measurement errors when comparing the experimental results with 
a thermal model which considered only the local heating by the central 10 µm portion of 
the heater between the V+ and V- taps.   
 
Table 3-2.  Estimating the thermal resistances between sample and copper cold finger for a typical 
experiment inside a benchtop cryostat [Fig. 3-2(c-d)].  Note that here we crudely assume locally 1D heat 
transfer through the stack, and use an effective area ratio Asample / ACarrier » 0.5 to roughly take into account 
the spreading effect when heat flows from a small size sample to a large size chip carrier and cold finger. 
 

Labels 
in Fig. 3-2 

Note  
Thermal k 
[W/m-K] 

Area 
[cm2] 

Thickness 
[µm] 

Thermal 
Resistance 
[K/W] 

RSi-CC Silver Paint 8 1 100 0.10 

RCC 
Chip 
Carrier 
(ceramic) 

17 1 3,000 1.80 

      

RCC-CF,naive 
Vacuum 
Grease 

0.2 2 500 – 1,000 13 - 25 

      

RCC-CF,improved Indium Foil 80 2 500 0.06 

 
Fig. 3-3.  An example of a large effect of DC background heating in a sample with long I+/I- leads, 
expressed as temperature rise per mW of power at the central heater line.  This control experiment used a 
sample similar to Fig. 3-1 but excluding the graphene layer, and measured temperature at points spanning a 
larger range of distances from the heater line.  For this naïve design as shown in Figs. 3-2a and 3-2c, in 
order to reconcile the measurements with the 3D FEM simulations, the FEM model must include the extra 
Joule heating from the long heater leads as well as the external thermal resistances dominated by the grease 
layer (see the progression of model curves 1®2®3).  These results suggest two improvements as indicated 
in Figs. 3-2b and 3-2d. 
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Figure 3-3 shows more detail about these two effects.  In order to verify the agreement 
between the measurement and the 3D FEM model in the heat spreader method, we 
performed a control experiment to measure the temperature response on the top surface 
of the top oxide for 9 distances ranging from 1 to 1000 µm away from the heater line.  
Note that this control experiment has no graphene layer, and thus the FEM has no fitting 
parameters.  As shown schematically in Fig. 3-2a, our initial design of the heater line had 
very long I+ and I- leads, which dissipated over 20 times more heating power than the 
central potion of the heater!   Comparing curves (1) and (2) in Fig. 3-3, including this far-
field Joule heating in the 3D FEM model helps bring the model closer to the experimental 
points.   However, this requires a much larger simulation domain which increases the 
computational time, and there are still major discrepancies in the temperature field 
especially for larger x.  
 
In addition, as shown in Fig. 3-2c, our original design relied on a layer of vacuum grease 
(k~0.2 W/m-K) to make thermal contact between the chip carrier and copper sample 
stage.  We estimate that the thermal resistance of this layer is 13-25 K/W.   Thus, for 
every 1 mW dissipated in the central heater line, another 20 mW is dissipated in the I+/I- 
leads, corresponding to 0.3 – 0.5 K of temperature drop through the grease, which 
accordingly increases the temperature of the sample measurement region by the same 
amount.  Thus, we estimate that the combined effects of Joule heating in the current leads 
and poor heat sinking between sample and copper stage are enough to cause a significant 
uniform “background” temperature rise of ~0.5 K/mWHtr, which affects all T sensors 
uniformly (see curve 3 of Fig. 3-3). 
 

 
Fig. 3-4.  Top view SEM images for (a) original design with long and narrow lines for the heater’s I+ and I- 
leads, and (b) improved design with short and fat leads.  These images correspond to Fig. 3-2a,b.   These 
SEM images also show that the graphene flake has been trimmed to a rectangular shape in the improved 
design, a more regular geometry which is also helpful for the analysis.  
 
Based on the lessons learned in Fig. 3-3, we improved the experiment: 
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• The heater current leads were made much shorter and wider (see the schematic in Fig. 
3-2b and the SEM images in Fig. 3-4b), reducing the background heating by a factor of at 
least 10. 
• We replaced the grease with indium foil (k~80 W/m-K) and built a simple spring 
fixture to apply several atmospheres of clamping pressure (see the schematic in Fig. 3-
2d).  Referring to the estimates of Table 3.1, this change should reduce the total thermal 
resistance for heat sinking, and thus background temperature rise, by another factor of at 
least 10. 
• Recognizing that the three-dimensional aspect of the heat spreading was important for 
the overall thermal response, in the improved design we trimmed the graphene flake from 
an irregular (Fig. 3-4a) to a rectangular shape (Fig. 3-4b). 
 
3-1-4.  Identifying a technique’s best sensitivity range 
 
Every experimental technique is best suited for measuring only a limited range of 
property values, depending on sample’s dimensionality / geometry and thermal 
properties.  We have discussed the former in detail in Chapter 2.  We now discuss the 
latter, continuing the case study of the heat spreader method.   
 
Although this heat spreader method was developed for measuring multilayer graphene, it 
turns out that it was not sensitive to the thinnest of films, e.g. single-layer graphene with 
relatively low thermal conductivity.  This limitation arises from the dual functions of the 
bottom oxide layer, as shown in Fig. 3-1a.  Besides its role in the thermal model, this 
oxide is critical for determining the number of the graphene layers by an optical 
interference method, which requires its thickness to be no less than ~ 300 nm [3].  We 
shall now see how such relatively thick oxide limits the sensitivity of the heat spreader 
method for ultra-thin films with low thermal conductivity. 
 
This limitation can be qualitatively understood from the requirement of the fin model (see 
Section 2-2-2F for details), which requires 

,          (3-19) 

where b-1 is the fin length.  Recalling Eq. 3-2 

,      

and approximating heff  from Eq. 3-3 to be kBotOx / tBotOx, since the two contact resistance 
are orders of magnitude smaller than :;'.<( =;'.<(⁄ , we simplify Eq. 3-19 as  

,         (3-20) 

β −1 ≥ tBotOx

β −1 = kgr ,/ /Acr / heff P

k ⋅ t( )gr ≥ k ⋅ t( )BotOx
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which suggests that the heat spreader method, if fitting to a 1D fin model, will lose its 
sensitivity to graphene samples with  much smaller than .  Plugging in 

numbers, the bottom oxide layer has » 450 [(W/m-K) × (nm)] while the bi-layer 

sample has  » 30 [(W/m-K) × (nm)].  Thus, Eq. 3-20 shows that the 1D fin 

treatment is not appropriate for the thinnest samples. 
 
Generalizing the data processing from a 1D fin approximation to a full 3-D FEM 
treatment pushed the sensitivity limits to substantially smaller  of ~50 [(W/m-K) × 

(nm)].  Indeed, for the single-layer graphene (SLG) sample there was no measurable 
temperature rise at the three T sensors above the noise floor, which means that this 
sensitivity estimate establishes the upper bound on the SLG sample’s thermal 
conductivity [1].  
 
3-1-5.  Overall uncertainty of the heat spreader method 
 
 

 
Fig. 3-5.  Total uncertainty of the heat spreader method as a function of the product of the thermal 
conductivity and the thickness, (kgr,// ´ tgr), in a log-log scale.  This uncertainty is defined as the ratio of half 

of the calculated 95% confidence interval to the experimental result, .  The 

symbols represent measurements on graphene samples with different thicknesses, while the dashed vertical 
line indicates the [k ´ t] value of the control experiment on a Pt thin film with a thickness of 38 nm.  The 
dominant feature is that the uncertainty decreases with increasing (kgr,// ´ tgr).  The measurements of the 
thinnest samples, especially the SLG, were only meaningful for establishing an upper bound on kGr, so that 
the corresponding calculated uncertainty appears absurd.  
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Accounting for all of the various phenomena described above, for our specific geometries 
and properties of the stack, we evaluated the total uncertainty of this technique using a 
Monte Carlo method (Section 4-3).   
 
Figure 3-5 shows the uncertainty as a function of the product of the thermal conductivity 
and the thickness (kgr,// ´ tgr) of graphene and ultra-thin graphite thin films [1].  Note that 
the uncertainty is defined as the ratio of the half of the calculated 95% confidence 
interval (kLB < k < kUB) to the experimental result, .  The blue 

symbols represent our measurements on different samples, ranging from a single-layer 
sample to a 21-layer sample.  The red vertical dashed line indicates a control experiment 
to validate the spreader method, in which we extracted the thermal conductivity of a 38-
nm-thick Pt thin film using this technique and compared to a separate experiment 
combining resistance thermometry and the Wiedemann-Franz law (see more details in 
Section 3-3 and Ref. [1]), which demonstrated an agreement of better than 5%. 
 
The key feature of Fig. 3-5 is that the heat spreader method loses its accuracy as (kgr,// ´ 
tgr) decreases.  For example, the uncertainty for the 21-layer thick sample at 95% 
confidence interval is ±16%  [i.e., =0.16] .  This uncertainty 

increases to > 10,000% for the single-layer sample, an absurd value indicating that the 
measurement in fact is no longer able to detect the actual kgr,//.  This does not mean the 
measurement is empty of meaning, however; rather, as noted in the previous subsection, 
this measurement still had value in establishing an (unexpectedly low) upper bound on 
the SLG thermal conductivity [1]. 
 
More details of this uncertainty analysis can be found in Table 4-1 and Section 4-3. 
 
3-2. “Pre-lab exercises”: Estimating key electrical parameters prior to the experiment 
 
Similar to the various thermal estimates presented above, it is also recommended to 
estimate some of the key electrical parameters expected in an experiment prior to taking 
any data.  Among other things, this helps ensure that the appropriate equipment is 
selected.  Further, gross errors are more quickly noticed if the experimentalist already has 
an idea of the ballpark values of expected signals.  In the following two examples we 
outline some of these key estimates in the context of the classic 3w method. 
 
Example 3-1: Consider a 3w method to measure the thermal conductivity of an undoped 
Si wafer at room temperature, as presented in Section 2-1-1.  Making reasonable 
assumptions as needed, give numerical estimates for: 

1
2 kgr ,//,UB − kgr ,//,LB( ) kgr ,//,expt

1
2 kgr ,//,UB − kgr ,//,LB( ) kgr ,//,expt
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a.  How much Joule heating is required? 
b.  What electric current should we apply? 
c.  What 3w voltage is anticipated? 
 

 
 
Fig. 3-6.  Flowchart showing the procedure to estimate the magnitude of Joule heating, 1w current, 1w 
voltage, and 3w voltage. 
 
Solution: 
This problem statement is underspecified, and a number of additional assumptions are 
needed to complete the estimates.   As shown in the flowchart of Fig. 3-6, before we can 
even estimate how much Joule heating is needed, we will need to specify a target DTsub,x, 
the amplitude of the oscillating part of the temperature response.  For a measurement in a 
temperature environment at T¥ » Tthermal-stage, where Tthermal-stage is the set point of a 
temperature controller in K, usually we want DT < 0.01Tthermal-stage, so that there is 
minimal ambiguity in reporting the measured k as a property measured simply at Tthermal-

stage.  On the other hand, small DTsub,x also makes all the signals smaller, which is more 
challenging from a signal-to-noise perspective.  Here as a compromise let’s choose 
DTsub,x = 0.5 K.     
 
The next step in relating Q and DTsub,x is to estimate the real part of the thermal transfer 
function, Rsub.  From Eq. 2-13, we have 

,        (3-21)  

where l and b are the length and half-width of the heater line, h » 0.923,  is the 

penetration depth, and ksub is the thermal conductivity of the sample. 
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Note here Rsub is a function of the geometry of the heater, the thermal properties of the 
sample, and the heating frequency.  We do not know any of those parameters, so let’s 
consider them one by one to come up with reasonable estimates.  Although the heat 
capacity of silicon is easily looked up, for rough estimates even this is not necessary, 
because as discussed in Appendix G1 a reasonable estimate is C ~ 3 ´ 106 J/m3-K for 
almost any material at room temperature and above.  We should also have an order-of-
magnitude estimate for ksub based on our tentative understanding of the sample.  In this 
example we are not given any specifications about doping or microstructure of this Si 
wafer.  Based on the literature this suggests ksub might range anywhere from ~10 W/m-K 
to 150 W/m-K.  Because for a given DTsub,x, Q is directly proportional to ksub, to ensure 
we reach DTsub,x = 0.5 K for this entire range of ksub the conservative choice is to complete 
the subsequent calculations using ksub = 150 W/m-K.  (Although we do not do so here, it 
would also be prudent to repeat the calculations for the other extreme, ksub = 10 W/m-K, 
to establish both upper and lower bounds on the electrical signals.) 
 
Here based on experience we use a typical value for the frequency of the driving current, 
1000 Hz, leaving the detailed estimate of a proper frequency range for the next example 
problem.  Similarly, based on experience, for the dimensions of the microfabricated 
heater line we choose typical values 1 mm in length and 10 µm	 in	 width.	 	 Plugging	
everything	into Eq. 3-21, we estimate Rsub = 8 K/W.  Thus, to reach DTsub,x = 0.5 K we 
will require a Joule heating of around 60 mW. 
 
We can now estimate the electrical resistance, Re, of the metal heater line.  Let us use Au 
as an example, and assume it is 300 nm thick.  The handbook resistivity for pure bulk 
gold is 2.44´10-8 W-m (However, this will be significantly increased in a real 
microfabricated film; see Appendix G4).  This gives an estimated Re » 8 W. 
 
With the Joule heating of 60 mW and the electrical resistance of 8 W, we estimate the 
driving electric current to be ?@A,%BC = DE !F⁄   » 90 mA, and from Ohm’s law the 1w 
voltage to be 720 mV. 
 
Finally, using Eq. 2-12 with a temperature coefficient of resistance of a typical 
microfabricated Au line heater as a » 3.4´10-3 K-1 (Handbook value; see also Appendix 
G4), we estimate the 3w voltage to be around 600 µV.  Both the 1w and the 3w voltages 
are well within the range of a routine measurement, suggesting this should be a 
straightforward experiment once the bugs are worked out. 
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Example 3-2: Estimate appropriate frequency ranges of the driving current for a 3w 
measurement of a 500-micron-thick undoped silicon wafer.  Repeat for a 1-cm-thick 
fused silica sheet. 
 
Solution: 
Here our approach is to determine the upper and lower bounds of the frequency range by 
comparing the penetration depth with the geometry of the heater and sample, in order to 
satisfy the basic assumptions of the heat transfer model. 
 
Recall the physical picture (Fig. 2-1) and the expression of penetration depth (Eq. 2-1), 
and rewrite it as 

,          (3-22) 

where the Joule heating frequency, , is double that of the electrical current, 
. 

 
We also recall from Section 2-1 the two assumptions of the classic 3w method.  Firstly, 
an infinitely narrow heater: 
Lp >> b;          (3-23) 
and secondly, a semi-infinite sample: 
Lp << t,          (3-24) 
where b is the half width of the line heater and t is the thickness of the sample. 
 
Combining Eqs. 3-22 – 3-24, we come up with a generic expression 

,         (3-25) 

to link the extreme (subscript m, meaning either minimum or maximum) frequency of 
electrical current, fm, and the corresponding geometry, LG.  Here LG = b in Eq. 3-23 and 
LG=d in Eq. 3-24.  Note c is a factor of safety, a pure number corresponding to the “much 
larger” in Eq. 3-23, or the “much smaller” in Eq. 3-24.  Quantitative results for the errors 
introduced by selected values of c have been collected in Table 3 of Ref. [5]. 
 
Substituting a typical b = 5 µm for a heater line prepared by standard photolithography, 
Dsub = 7.5´10-5 m2/s for undoped silicon at room temperature, and taking c = 5, we obtain 
the upper bound fmax = 9,600 Hz.   
 

Lp =
Dsub
4π f

ωH

ωH = 2ω = 4π f

fm =
Dsub

4π cLG( )2
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Likewise, substituting d = 500 µm for the thickness of a Si wafer and a safety factor c = 
, we obtain the lower bound fmin = 600 Hz. 

 
Following a similar procedure using the thermal diffusivity of fused silica at room 
temperature, Dsub = 7.5´10-7 m2/s, we estimate the proper frequency range for a 1-cm-
thick silica sheet to be 0.015 – 95 Hz.   For ultralow frequency measurements (f < 0.1 
Hz), the long time constant required of the Lock-In Amplifier is also a practical concern 
(see Appendix A3). 
 
3-3. Control experiments: Validation using samples of known k 
 
After carefully designing their new experiment to be feasible based on extensive 
estimates such as presented above, the experimentalist is no doubt eager to finally get to 
work collecting data on real samples.  But before measuring novel materials, it is wise to 
first validate a new experimental apparatus using control experiments on standard 
materials with well-known thermal properties.  It is best practice to validate the rig over a 
wide range of property values, e.g. using two or more standard samples with a range of k 
bracketing the expected k of the unknown samples. 
 
A good candidate material for low-k validation is amorphous SiO2 (a-SiO2; also known as 
fused silica).  One key merit of bulk a-SiO2 is that its thermal conductivity is independent 
of the characteristic lengths of the experiment, such as heater width and film thickness, 
down to 10s of nanometers [6], [7].  However, the thermal conductivity of thin films may 
depend on the growth type.  For example, different a-SiO2 thin films grown thermally [8], 
sputtered [8], evaporated [8], or PECVD [9], with thickness ranging from 10s of 
nanometers to several microns, have been measured and found that the thermal 
conductivity can be reduced to around half of the bulk value.  
 
A good candidate for high-k validation at the 100 µm scale and larger is intrinsic silicon, 
which is also well studied [6], [10].  Doped samples are not as helpful, because silicon’s k 
strongly depends on both doping level and species [6] and such samples are less well 
characterized in the literature.  Also, the phonon mean free paths in silicon are quite long, 
so that the effective thermal conductivity may be significantly reduced in samples with 
characteristic lengths below ~10 µm [6], [11], [12].  Thus, a convincing control 
experiment should be conducted on an intrinsic bulk silicon wafer, rather than any 
microfabricated thin-or thick-film (unless of course k of the film was also measured 
independently). 
 

1
5
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For thin films, high-k validation samples are much harder to come by.  Fundamentally 
this is because high-k materials are generally crystalline and have relatively long mean 
free paths for both phonons and electrons (10-100 nm for electrons in metals [13], and 
can easily reach beyond ~10 µm for phonons [14], [15]).  This makes these materials 
sensitive to extrinsic scattering effects by defects, external surfaces, and internal grain 
boundaries, all of which are expected in a microfabricated sample, reducing k well below 
handbook values (Appendix G4) but by an extent which is hard to predict accurately.  In 
such cases, it is recommended to cross-check k of a validation sample using more than 
one apparatus or technique.  For example, some labs have access to a laser-based 
metrology method such as time- or frequency-domain thermoreflectance (TDTR or 
FDTR) which are well-suited for measuring k of thin films.  Also research groups may be 
open to sharing samples which they have previously measured and reported in the 
literature.   
 
If metal films are an option for a validation sample, another approach takes advantage of 
the Wiedemann-Franz Law, a remarkable linear relationship between the thermal 
conductivity (ke) and electrical conductivity (s) of metals: 

          (3-26) 

where T is the absolute temperature in Kelvin and L0 =  2.44´10-8 W-W-K-2 is the Lorenz 
number.  Crucially, for non-cryogenic temperatures the Wiedemann-Franz Law is largely 
unaffected by extrinsic scattering mechanisms such as defects, surfaces, and grain 
boundaries, so that the bulk handbook value of L0 can be expected to still hold to within 
±~10% in a microfabricated metal film [16]–[18], even though sFilm may be smaller than 
sHandbook by a factor of 2 or more (Appendix G4).  We used this approach to help validate 
the heat spreader method for measuring the in-plane k of encased thin films (see Section 
2-2-2F and Fig. 3-5) [1].  In a single evaporator run, we prepared two nominally-identical 
38-nm thick Pt thin film samples.  We measured s from one sample using a four-probe 
resistance measurement, which using Eq. (3-26) gives an estimate of k.  The other sample 
was used to measure k directly using the heat spreader method.  These two values of k 
agreed to within 5%, which helped increase our confidence to move ahead and use this 
new method to study the k of graphene samples. 
 
3-4. Electrical sanity checks: repeatability, reversibility, and scaling 

ke = L0σT
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Fig. 3-7.  Repeatability and reversibility checks on a DC measurement through the heater line of a graphene 
sample as shown in Fig. 3-1.  The goal is to confirm the measurements are immune from such electrical 
artifacts as Seebeck voltages, low-frequency drifts, and power-line noise.  (a) Baseline measurement 
monotonically increasing a positive DC current.  (b) Repeatability and hysteresis check by then decreasing 
the positive DC current from high to low.  (c) Reversibility check by applying a negative DC current.   
 
When commissioning a new electrothermal measurement setup, and for general 
debugging, we have found it helpful to exercise the electrothermal response of the 
experiment through a broader-than-normal parameter space to confirm certain 
symmetries and scaling trends.  Such checks increase confidence that the instruments are 
measuring what we think they are.  On the other hand, this requires taking extra data 
beyond what is actually needed to extract a thermal property, and thus are not normally 
part of day-to-day operations.   
 
Extra care should be taken for DC measurements, since they are easily affected by non-
idealities such as Seebeck voltages, low-frequency drifts, and power-line noise, as 
discussed in Appendix C.  Figure 3-7 shows two sanity checks to confirm the 
measurement is not impacted by these effects, for a typical measurement of the thermal 
conductivity of graphene using the embedded heat spreader method (Fig. 3-1).  This 
measurement requires plotting the electrical resistance of the microfabricated line heater 
as a function of Joule heating power through it, and extracting its slope.  In Fig. 3-7a, we 
apply a positive DC current, and increase it through a sequence of 5 values from low to 
high.  This plot is all that is strictly necessary to extract the slope and calculate k of the 
graphene sample.  However, to help verify the raw data, as a check in Fig. 3-7b we then 
decreased the DC current through the same 5 values from high to low.  The fact that the 
two sets of measurements (black and blue) overlap tightly with each other confirms that 
the waiting time between two adjacent data points is long enough for the system to reach 
steady state.  This overlap also confirms that the system is free of significant hysteresis or 
drifts.  Finally, in Fig. 3-7c, we flip the polarity and apply negative DC currents, with the 
same magnitude but opposite sign as the 5 current values used in Fig. 3-7a.  Again, the 
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two sets of data in Fig. 3-7c overlap very closely with each other, which confirms that 
these measurements are free from thermoelectric effects and DC offsets. 

 
Fig. 3-8.  Scaling checks on a 3w measurement to confirm the voltage response from the heater line is 
thermal in origin, without significant artifacts from capacitive coupling or AC offsets.  Data are obtained 
from one of the samples in Ref. [19]. 
 
AC measurements are immune from most of the non-ideal effects discussed in the 
preceding paragraph (see details in Appendix C).  However, other artifacts are possible in 
principle, especially at high frequencies, such as parasitic capacitive coupling between 
leads, or even among microfabricated electric contact pads mediated through the 
dielectric isolation layer and an electrically conductive substrate.  Figure 3-8 shows a 
scaling check to help confirm the measured signal is dominated by thermal, rather than 
capacitive or inductive, effects.  The key is that the thermal voltages in a 3w 
measurement scale as the cube of the driving current ( ).  This scaling is 

quite general, and applies to both the 1st and 3rd harmonics, both in-phase and out-of-
phase, for all 3w measurements without a DC offset [20].  On the other hand, we would 
expect artifacts from capacitive or inductive coupling to follow a linear response in the 
electrical domain, , where  is some complex 

electrical impedance representing the parasitic coupling.  Therefore, confirming that the 
voltage response follows a straight line when plotted against  is a strong indication 

that the voltages indeed are thermal in origin.  Thus, the scaling seen in Fig. 3-8 agrees 
with the prediction from Eq. 2-2, and confirms that this measurement is dominated by 
thermal signals rather than capacitive coupling artifacts or AC offsets. 
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Chapter 4.  Uncertainty and Sensitivity Analysis 
 
"Offered the choice between mastery of a 5-foot shelf of analytical statistics books and 
middling ability at performing statistical Monte Carlo simulations, we would surely 
choose to have the latter skill."           
    

        - W. H. Press et al., Numerical Recipes.   
 
 
In this chapter, we highlight the importance of uncertainty and sensitivity analysis: not 
only in assigning upper and lower bounds to the measurement result, but also for 
identifying which possible changes to an experiment can best enhance its accuracy.  We 
first discuss the conventional Partial Derivative (PD) method of uncertainty analysis and 
its limitations.  Next we introduce the concept of sensitivity, which is a powerful tool to 
identify the dominant uncertainty sources.  Last we introduce a Monte Carlo (MC) 
scheme, and discuss in detail a recipe for its implementation.  The examples in this 
chapter will often refer back to the heat spreader method which has been discussed in 
Chapter 1 (e.g. Fig. 1-8) and Chapter 2 (e.g. Fig. 2-13). 
 
While we expect many readers have some acquaintance with the PD method, this chapter 
may be their first introduction to the MC approach which therefore will be explained 
more thoroughly.  The MC scheme is particularly powerful when some of the parameters 
have non-Gaussian probability distributions, which violates one of the key assumptions 
of the PD method.  For example, for a parameter with large uncertainty it often makes 
more sense to assume it follows a lognormal rather than normal probability distribution, 
thereby ensuring its value can never be negative. 
 
4.1 Preliminaries 
 
As shown in Fig. 4-1, we may think of a thermal measurement as a process to determine 
one or more properties (a) of a sample based on control variables (X) and response 
variables (Y).  In general, a, X, and Y are all vectors, which could be composed of many 
components.  For example, in the heat spreader method (e.g. Figs. 1-8 and 2-13), the 
components of the X vector include the Joule heating power, all the geometries, and the 
thermal properties of the various constituents except the unknown thermal conductivity 
of the graphene flake; the Y vector has three components, namely the temperatures 
recorded by the three sensors; and a is the thermal conductivity of the graphene flake, a 
scalar.  Another example is the calibration of the temperature dependent electrical 
resistance of a heater line, to be discussed in Section 4-3-2.  In this case X and Y are the 
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N calibration temperatures and corresponding electrical resistance values, both of which 
are vectors of length N, and a = {r0, θ, ∆} is a vector of three model parameters. 
 

 
 
Fig. 4-1.  A generic thermal measurement can be thought of as an algorithm to extract the thermal 
properties (the physics variables, a) of a material based on various control variables and response variables.  
Here we group all the control variables as an abstract vector X, and likewise a and Y, with examples and 
details in the main text. 
 
 
The primary goal of a thermal measurement is to obtain one or more numbers, a.  For 
example, the thermal conductivity of an undoped silicon wafer at room temperature was 
measured to be k=148 W/m-K.  However, there is more information we should extract.  
First, since no measurement can be completely free of errors and uncertainties, we want 
to know how close our measured number is likely to be to the truth.  Second, if this 
accuracy is deemed insufficient, we may also want to know the best ways to further 
reduce the uncertainty of our measurement.  Correspondingly, this chapter tries to address 
two key questions: 
 

• How confidently can we claim that the true value is within a specific range, 
?  For example, using the 3w method, we may conclude that we are 

95% confident that the true thermal conductivity of the undoped silicon wafer at 
room temperature is somewhere in the range [128, 168] W/m-K.  

 
• Which control or response variables dominate the total uncertainty?  For 

example, using the 3w method to measure the thermal conductivity k of silicon 
requires knowledge of the length l, the width 2b, the electrical resistivity r, and 
the temperature coefficient a, of the heater line.  For each of these we must 
already have an estimate of their true value and uncertainty: l, ul, b, ub, r, ur, a, 
ua.  But some of these input uncertainties may be much more important for the 
ultimate uncertainty in k than others.  For example, we may find that 75% of the 
total uncertainty in k can be traced back to the uncertainty in a, while only 5% of 
the uncertainty in k can be attributed to the uncertainty in l.  In this case, if we 
need to further tighten the confidence interval (CI) on k, our efforts would be 
much better focused on reducing ua than ul. 

 

Control Vars
X

Response Vars
Y

Physics
a

amin ,amax[ ]
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We have at least two approaches to answer the questions above.  The most 
straightforward approach, as depicted in Fig. 4-2, is to conduct multiple measurements 
and analyze the results statistically.  Continuing with the heat spreader method as an 
example, multiple measurements includes repeating measurements on a single sample, or 
much better preparing nominally identical samples and measuring each of them.  
However, in many practical cases we are constrained by the time and expense of 
preparing samples and running the experiment, such that we often may only have only 
one sample of any given type.  In this scenario, if we know the uncertainties of the 
control and response variables there is still a second approach to answering the two 
questions, by the propagation of errors (Fig. 4-3).   
 

 
 
Fig. 4-2.  An approach to uncertainty estimation that is straightforward in principle but sometimes 
impractical: multiple measurements.  For example, in the heat spreader experiments, we may prepare 
nominally identical samples and measure each of them, or repeat measurements on a single sample.  In 
each of the N measurements we extract a best estimate for the physics a, which are then analyzed to report 
our best estimate aavg and its uncertainty ua. 
 

 
Fig. 4-3.  The uncertainty estimation approach focused on in this chapter: a single measurement (subscript 
0) combined with error propagation.  We will discuss both partial derivative and Monte Carlo methods for 
error propagation. 
 
While the first approach (Fig. 4-2) is straightforward, in this chapter we focus on the 
second approach (Fig. 4-3), the propagation of errors.  To this end we will introduce two 
methods, a Partial Derivative method and a Monte Carlo method, each with its own pros 
and cons.  We shall now discuss these two methods with detailed examples. 
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4-2.  Partial Derivative (PD) method 
 
The Partial Derivative method is a conventional method for uncertainty analysis (pg. 3 of 
Ref. [7]).  Although it is subject to certain restrictions listed at the end of this section, the 
key merit of the PD method is that it can not only give a confidence interval (CI), but also 
indicate the dominant error sources.  It also has a clear and appealing analytical 
formulation. 
 
We first present a general framework for the Partial Derivative method.  Because the 
control and response variables are treated equivalently here, they can be concatenated as 
a new vector Z = [X; Y].  We then express the property vector a as a function of Z, 
namely, 

. (4-1) 

 
Also, for simplicity in notation we analyze only one component of a, and write it as a 
scalar, a = f(z1, z2, ... , zn).  The results are readily generalized to the other components of 
a. 
 
The essence of the PD method is that the uncertainty of a can be expressed as 

, (4-2) 

where  is the uncertainty in the i-th variable zi. 

 
To obtain a relative uncertainty, we re-write Eq. (4-2) as 

, (4-3) 

which defines a dimensionless sensitivity [1], [8], [9] 

. (4-4) 

For example,  means that a 1% increase in zi will cause a 10% decrease in a.  

 
Based on , we also define an uncertainty contribution,  

,  (4-5) 
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. (4-6) 

 
We now demonstrate this framework with an example, which analyzes a 12-layer-thick 
graphene sample [1] using the heat spreader method (Sections 1-7 and 2-2-2F).  In this 
example, a is the thermal conductivity of graphene, kgr,//.  As summarized in Table 4-1, 
the control variables (X) are the geometries and the thermal properties of the sample 
stack, and the response variables (Y) are the temperature response recorded by the metal-
line sensors.  Note that in this sample only the first two sensors were working [1].   
 
Table 4-1 outlines the relative uncertainty ( ) of each input parameter corresponding 

to one standard deviation of a Gaussian distribution.  The two largest relative 
uncertainties are in the thermal contact resistance between graphene and SiO2 and the 
thermal conductivity of the substrate, with  and , 

respectively.   
 

To calculate the sensitivity ( ), we numerically evaluate the partial derivatives (Eq. 4-

4) using small perturbations of each parameter around its typical value.  These 
calculations show that this kGr is most sensitive to the following four parameters: (a) 

distance between the heater and the first sensor with , (b) the thickness and 

(c) the thermal conductivity of the bottom oxide layer with and , 

respectively, and (d) the temperature response of sensor #1 with . 

 

With  and  above, we obtain the uncertainty contribution ( ) for each 

parameter using Eq. 4-5.  The three most important contributions come from kBotOx, ksub, 

and , with , , and . 

 
Proceeding similarly with all other parameters of Table 4-1, we finally combine the 
results using Eq. 4-6 to estimate the 68% confidence interval (CI) of this 12-layer-thick 
graphene sample as [64, 119] W/m-K, and the 95% CI as [37, 146] W/m-K. 
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Table 4-1.  An example of uncertainty analysis in the heat spreader method using the Partial Derivative 
method, for a 12-layer-thick graphene sample [1].  The control variables X and the response variables Y are 
grouped as new variables Z = [X; Y].  All uncertainties correspond to the standard deviations of Gaussian 
distributions, except kSub and  which are taken to follow lognormal distributions.  Two important 

parameters for assessing this measurement are the sensitivities  (Eq. 4-4), which indicates which 

parameters the thermal conductivity of graphene is most sensitive to, and the uncertainty contributions  

(Eq. 4-5), which reveals the dominant error contributors to be , , and 
.    
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We close this section by noting some limitations of the Partial Derivative method.  There 
are three key assumptions of this framework: the uncertainties in all control and 
responses variables are uncorrelated, the errors are small perturbations, and the errors 
follow Gaussian distributions [7].  In many cases, the latter two assumptions may be 
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violated, thus limiting the method’s applicability.  In such cases the Monte Carlo method 
is a good complement, which we turn to next.   
 
4-3.  Monte Carlo (MC) method 
 
The Monte Carlo scheme (pg. 807 of Ref. [5]) is a good complement to the Partial 
Derivative method, especially when one or more of the key assumptions of the Partial 
Derivative method are violated.  For example, when the uncertainties of the input 
parameters cannot be treated as small perturbations, and even do not follow Gaussian 
distributions (Section 4-3-1) [1], the MC method is a better choice for uncertainty 
analysis.  In addition, the MC method is particularly powerful for evaluating the 
uncertainty of a nonlinear fit (Section 4-3-2) [4]. 
 
 4-3-1. Detailed walkthrough of the MC method: An example using variables with large 
and non-Gaussian uncertainty distributions about their mean value 
 
One example in this category is the kgr analysis shown in Table 4-1, in which the contact 
resistance between graphene and SiO2 has rather large uncertainty, violating one of the 
basic assumptions of the partial derivative uncertainty analysis described in Section 4-2. 
 
To begin the Monte Carlo scheme, we must first identify the control variables (X), the 
response variables (Y), the physical model, and the fitting parameters (a).  As above, X is 
a vector composed of all the geometries and the thermal properties input to the FEM 
model (see Fig. 2-13 and Table 4-1), except kgr; Y is a vector composed of the 
temperatures measured by the three resistive thermometers; the physical model used for 
fitting is the 3D FEM model; and a is kgr,//, a scalar. 
 
We explain the detailed steps of the MC analysis recipe through the following extended 
example, numbered to correspond to the flowchart of Fig. 4-4: 
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Fig. 4-4.  Flowchart of a Monte Carlo scheme to analyze uncertainty.  The numbers in blue circles 
correspond to the steps described in the recipe in text.   
 
 
(1)  Obtain the best fit for the model physics vector a0 (a scalar kgr,0 in this example) 
based on the measured control variables (Xmsrd), the measured response variables (Ymsrd), 
and the physical model (the 3D FEM model).  For the 12-layer-thick graphene example 
as discussed in Table 4-1 in Section 4-2, the best fit was already found to be kgr,//,0 = 91.5 
W/m-K.   
 
(2) Consider the relationships between the measured and true control variables (Xmsrd «  
Xtrue), the response variables (Ymsrd « Ytrue), and physics (amsrd « atrue, or kgr,msrd «  
kgr,true in this example).  Although these true values are unknowable, we do know that the 
measured variables (Xmsrd and Ymsrd) are perturbed around the true variables (Xtrue and 
Ytrue) by some perturbations (dXtrue and dYtrue; here d denotes perturbation), which are 
unknown but for which we must have estimates of the underlying uncertainty 
distributions (uX and uY).  
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Continuing with the 12-layer-thick graphene example, let’s consider one entry in the X 
vector, the thermal conductivity ksub of the doped silicon substrate.  We can never know 
its true value ksub,true, so we settle for working with our best estimate based on a separate 
3w measurement, which gave ksub,msrd = 93 W/m-K.  Further, based on our experience and 
experimental judgment we believe its (unknown) perturbation dksub to be drawn from a 
lognormal uncertainty distribution of standard deviation  = 19 W/m-K (See details in 

Appendix H).    
 
(3) Now comes the key assumption of the Monte Carlo approach (pg. 807 of Ref. [5]): 
that the nature of error propagation in the true system (atrue) can be well approximated 
by the nature of error propagation in our best-estimated understanding of the system (a0).  
This is not the same as asserting atrue = a0; rather, we are assuming that da is a weak 
function of a in the vicinity of atrue, so that da can be approximated using calculations 
based on a0.  So as applied to the present example, to estimate the impact of dksub on 
dkgr,// we use an FEM model based on kgr,0 and assume that this gives a similar result for 
dkgr,// as the (impossible) exercise of using an FEM model based on kgr,//,true.  This key 
idea is implemented using numerous “synthetic experiments,” as explained next in steps 
(4)-(7).  
 
(4) First, simulate a randomized Xtrue,sim vector representing a fair estimate of what the 
underlying control variables might actually have been in the real experiment, based on 
our beliefs about the uncertainties in X.  Each entry of X has its own uncertainty 
distribution.  Importantly, these distributions may be large and/or non-Gaussian, traits 
which cannot be handled by the Partial Derivative approach.  To generate this Xtrue,sim we 
use a random number generator (hence this scheme’s Monte Carlo name) to estimate a 
random perturbation vector .  Thus, we have a simulated set of control variables: 
!"#$%,'() = !)'#+ + -!'().        (4-7) 
Continuing the example for the specific entry of X which is ksub, we draw a random 
uncertainty perturbation dksub from the aforementioned uncertainty distribution 
(lognormal distribution with standard deviation  = 19 W/m-K), and let us suppose for 

example this returned the value dksub = -13 W/m-K.  Then, we have a simulated “true” 
value  ksub,true,sim = 93 - 13 = 80 W/m-K.  This is similarly applied to all the other entries 
of X to generate an Xtrue,sim vector. 
 
(5) Next, based on these simulated true control variables (Xtrue,sim) from step (4) and the 
best fit kgr,0 from step (1), we generate the simulated true response variables, Ytrue,sim: 

. (4-8) 

In terms of the ksub example, we revisit the FEM model and re-run it using ksub,true,sim = 80 
W/m-K (and likewise all the other simulated perturbed Xtrue,sim values), but always using 

uksub

δXsim

uksub

Xtrue,sim
a0

Best Fit Model⎯ →⎯⎯⎯⎯ Ytrue,sim
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the original best estimate value kgr,//,0 =  91.5 W/m-K.   This FEM run will yield a specific 
set of response variables Ytrue,sim, in this example the sensor temperature rises per unit 
heating power, DTS1, DTS2, and DTS3.  Let’s focus on just one of these three, and suppose 
that this particular run gives DTS1,true,sim = 9,000 K/W. 
 
(6) We must also account for the fact that our measurements could not have accessed 
those Ytrue,sim directly, so they must be further randomized to account for their 
experimental uncertainty.  This again means using a random number generator to 
estimate a random perturbation vector , based on our understanding of the 
probability distributions of uncertainty for each member of Y, distributions which again 
can be large and/or non-gaussian.  Thus we will have a synthetic set of experimental 
response variables Ysynth corresponding to this particular Ytrue,sim,  
.'/0"1 = !"#$%,'() + -.'().        (4-9) 
Continuing with the discussion of the DTS1 entry of Ytrue,sim, we believe our thermometry 
to have  = ±5% uncertainty.  Supposing a call of the random number generator gives 

a value d(DTS1) = +2%, this corresponds to a synthetic experiment with a “measured” 
temperature rise DTS1,synth =9,000 + 180 = 9,180 K/W.   
 
(7) Now, obtain a best fit kgr,1 based on the measured control variables (Xmsrd) and the 
synthesized response variables (Ysynth).  
 
(8) Repeat steps (4) to (7) numerous (for example, N»1000) times, generating new 
random perturbations dXsim and dYsim every time, to obtain a population {kgr,//,1 , kgr,//,2 , ... 
kgr,//,N}.   If the physical model being fit for had more than one parameter, this would 
instead be a population of vectors, {a1, a2, ... aN}.     
 
(9) Now it is straightforward to analyze the statistics of this population of synthetic 
experiments {kgr,//,1 , kgr,//,2 , ... kgr,//,N} to obtain our estimated uncertainty for kgr,//,0 with a 
specified Confidence Interval (CI).  This invokes the key assumption stated at the 
beginning of step (3), that the spread of the synthetic population is a good estimate for the 
spread of an (unknowable) population of many true experiments.  To obtain this CI: 
 

• First, sort the simulated  {kgr,//,1 , kgr,//,2 , ... kgr,//,N} in ascending order. 
 
• Next, to evaluate a CI of (1-c)´100%, we throw out the first and last [(c/2)´N-
1] points of the sorted list.  For example, the commonly reported 95% CI 
corresponds to c = 0.05.  So if we have generated N =1000 synthetic experimental 

δYsim

uΔTS1
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points, this means throwing out the 24 largest and 24 smallest values of the sorted 
{kgr,1 , kgr,2 , ... kgr,1000} list. 
 
• Finally, the smallest and the largest remaining data give the lower and the upper 
bound of the (1-c)´100% confidence interval. 

 
Applying this recipe to the 12-layer-thick graphene example, we found the 95% CI as 
[41.9, 190.1] W/m-K [1].  Note here we were seriously limited by the computational time 
of the 3D FEM model fitting, so that we used a much smaller N = 80.  Note also that the 
MC analysis does not in any way change the best estimate value kgr,//,0 = 91.5 W/m-K, 
which as depicted in step (1) of the flowchart used only the directly measured X and Y. 
 
We end by comparing the results from the PD and MC frameworks (Fig. 4-5).  While the 
PD framework results in a 95% CI of [37, 146] W/m-K, the MC framework gives a 95% 
CI of [42, 190] W/m-K.  Note that in both the PD and the MC frameworks, the 95% CI is 
rather large, calling into question whether the PD method is even appropriate for this 
analysis; while the MC method is applicable even for large CI ranges. 
 

 
Fig. 4-5.  Comparison between the PD and MC results on the 12-layer-thick graphene sample [1].  The 
nominal value is 91.5 W/m-K for both methods, obtained from the best fit to the experimental 
measurement.  The PD method has a 95% CI of [37, 146] W/m-K, while the MC method has a 95% CI of 
[42, 190] W/m-K.  Due to the broad kgr CI, as well as the large and non-Gaussian uncertainty distributions 

of the inputs ksub and , one would question whether the PD method is appropriate for this analysis. 

 
 
4-3-2.  Another application of the MC method: Quantifying the uncertainty of a nonlinear 
fit 
 
Another category of problems that are especially suitable for a Monte Carlo method is the 
quantification of the uncertainty of a nonlinear fit which involves a complicated physical 
model.  A good example is again motivated by the analysis in Table 4-1, which indicates 

0
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100

150

200

PD MC 

R"c,gr−Ox
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that further reducing the uncertainty of the temperature rise of sensor S1 is one of the best 

ways to improve the measurement accuracy of kGr, since both its sensitivity  

and uncertainty contribution  are among the highest in the table.  The 

underlying calibration is the relation between the measured sensor resistance (Re,mrsd) and 
its corresponding temperature (Tset)  The key quantity to be calibrated is the slope m = 
dRe,mrsd/dTset with its corresponding uncertainty um, where both m and um could be 
functions of Tset.  
 
Table 4-2.  A comparison of two approaches for analyzing a resistance thermometry calibration data set, 
including uncertainty (see also Fig. 4-6 for the corresponding visualization).  The first two columns give 
the raw measurement data.  The next two columns apply a linear Re(T) model which is amenable to a well-
known textbook calculation of the 95% CI, though this model is only suitable for the higher temperature 
data.  The remainder of the table presents a Monte Carlo approach to analyze a nonlinear Bloch-Grüneisen 
model fit to the complete dataset.  See text for details. 
 

Temp-
erature, 

 
[K] 

Resist-
ance, 

 [W] 

Textbook approach & 
linear fit of the slope 

( ) 

Monte Carlo approach & 
Blöch-Grüneisen fit of the slope 

( ) 

 
[10-5 W/K] 

 
[10-5 W/K] 

Best fit to 
exper-
iments, 

Lower 
bound, 

 

[10-5 W/K] 

Upper 
bound, 

 

[10-5 W/K] 

 

[10-5 W/K] 

 

[10-5 W/K] 
310 3.38 

854 7.3 

826 821 830 4.7 
250 2.87 832 827 836 4.6 
216 2.59 837 8.33 842 4.5 
188 2.35 844 839 849 4.9 
164 2.15 852 846 858 5.8 
142 1.96 863 857 869 6.2 
124 1.80 876 869 882 6.8 
106 1.65 893 885 900 7.4 
92 1.52 910 902 917 7.7 
80 1.41 928 919 935 7.7 
71 1.32 

 

941 933 948 7.1 
63 1.25 951 944 956 5.9 
55 1.17 953 947 959 6.2 
48 1.11 940 928 954 13.0 
42 1.06 907 885 930 22.6 
37 1.01 852 819 888 34.5 
33 0.98 781 738 828 44.8 
29 0.95 680 628 737 54.3 
22 0.91 424 372 487 57.5 
17 0.89 216 181 262 40.7 
13 0.88 87 70 110 20.0 
10 0.88 32 25 41 7.8 

 
 
 
 

S kgr ,//ΔTS1
= 3.06

ckgr ,//ΔTS1
=15.3%

Tset Re,mrsd

80K ≤ Tset ≤ 310K 10K ≤ Tset ≤ 310K

  mlinear     umB−G   mB−G ,LB    mB−G ,UB  

       umB−G =

mB−G ,UB −mB−G ,LB( )
2  mB−G ,0  
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Table 4-2 shows a typical calibration dataset of Re,mrsd (2nd column) over a wide 
temperature range of Tset from 10 K to 310 K (1st column).  Before applying the Monte 
Carlo scheme we first review a simpler least-squares analysis, which uses a textbook 
analytical expression to quantify the uncertainty of a linear fit to the high temperature 
regime (Tset  ³ 80 K).  This side calculation helps us appreciate how complicated the 
analytical expression is even for such a simple scenario. 
 
Figure 4-6a isolates the higher-temperature regime (Tset  ³ 80 K) in which a linear fit is 
generally taken to be adequate.  Following a standard least-squares approach (pg. 377 of 
Ref. [11]), the slope of a linear fit, , is  

, (4-10) 

where  

, (4-11) 

, (4-12) 

n is the number of data points, and Re,mrsd,i is the electrical resistance measured at a 
specific temperature Tset,i.   Note that this mlinear is by definition independent of T. 
 
The uncertainty in this least-squares mlinear is also well known (pg. 390 of Ref. [11]).  
Although this approach does not explicitly take into account the uncertainty distributions 
of the raw measured temperature (uT) and resistance (uR) values, their impact is still felt 
through the random scatter in the (Tset, Re,mrsd) points.  At the (1-c)´100% confidence 
level the result is  

, (4-13) 

where the unbiased estimator of the variance is (pg. 379 of Ref. [11]) 

				,
	 	 	 	 	 (4-14) 
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Fig. 4-6.  A textbook approach to analyze the 95% CI of a linear fit to the high temperature dataset of (Tset, 
Re,mrsd) in Table 4-2 vs. a Monte Carlo approach to analyze the 95% CI of a nonlinear fit to the complete 
temperature dataset.  (a) High temperature dataset (points) and the linear fitting (line).  (b) The slope (solid 
line; left axis) of the linear fit in panel a, and its corresponding 95% confidence level (dashed line; right 
axis).  (c) Complete dataset (points) and the nonlinear fitting (line).  (d) The slope (solid line; left axis) of 
the nonlinear fit in panel c, and its corresponding 95% confidence level (dashed line; right axis). 
 
and  is the Student’s t statistic for the upper (c/2)´100% confidence threshold in 

this distribution with (n-2) degrees of freedom.  For example, for c = 0.05, the upper 
2.5% point of the t distribution with n = 10 data points of (Tset, Re,mrsd) is determined from 
standard tables to be  = 2.306. 

 
Applying Eqs. 4-10 through 4-14 to the first 10 data points of (Tset, Rmrsd), we obtain 

 and , as shown in the 3rd and 4th columns of 
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Table 4-2 and the solid and dashed lines in Fig. 4-6b.  This yields a 95% CI of 

 for the temperature range 80 K – 310 K. 

 
Due to the flattening in the Re(T) function at low T (Table 4-2; Fig. 4-6c), fitting the full 
T range clearly requires some kind of nonlinear model function.  Rather than following a 
purely empirical approach such as higher order polynomials, we use the physically-based 
Bloch-Grüneisen formula [4], [6]: 

. (4-15) 

This expression has three fitting parameters: r0 is the residual resistance due to impurity 
and boundary scattering of electrons; θ is a characteristic temperature depending on the 
material, e.g. θ for bulk crystalline gold is between 170 K and 200 K (Table 9.3 of Ref. 
[6]); and ∆ is a scaling factor indicating the strength of electron-phonon coupling.  
Obtaining best-fit values for r0,fit, θfit, and ∆fit, is viable using standard software packages 
to minimize the residual (e.g. fminsearch in Matlab), and  follows readily by 

analytically taking the temperature derivative of Eq. (4-15), as given in Eq. (4-16).  
However, for even a modestly complicated function such as Eq. (4-15) we are unaware of 
any general analytical approach to determining the uncertainties , and especially 

.   

 
On the other hand, the Monte Carlo scheme summarized in Fig. 4-4 is just as easy to 
implement for the nonlinear relation Eq. 4-15 as for the straight-line function 

.  We follow the recipe from Section 4-3, where now the control 

variable (X) is a vector composed of the 22 temperatures (Tset) set in the cryostat; the 
response variable (Y) is a vector composed of the 22 electrical resistances (Re,msrd) 
measured at those temperatures; and the physics model is the Bloch- Grüneisen formula 
of Eq. 4-15 with its corresponding model parameter vector a = {r0, θ, ∆}.  We also use 
our experimental judgment of the uncertainty distributions uT = ±0.01 K and uR = ±0.01 
W, to feed into steps 4 and 6 of the recipe. 
 
Following step 1 of the recipe in Fig. 4-4, we obtain a0 = {0.88 W, 158.9 K, 1.29 W} 
based on the complete calibration dataset (Tset, Re,mrsd) from columns 1 and 2 of Table 4-
2. 
 
Then following steps 4 through step 8 of the recipe with N = 80, we obtain a population 
{a1, a2, ... aN}.  For each ai vector we obtain an estimate for the slope  

mlinear − umlinear( ), mlinear + umlinear( )⎡
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	 4-16	

. (4-16) 

At a specific temperature, e.g. 310 K, we evaluate Eq. (4-16) N = 80 times to obtain 80 
different  based on the 80 ai vectors.  Following step 9 of the recipe, to 

evaluate the 95% CI we throw out the first and last points of the sorted 80 
.  The resulting lower bound ( ) and upper 

bound ( ) are listed in columns 6 and 7 in Table 4-2.  Note that 

the slope,  (column 5 in Table 4-2), is still calculated based on the 

initial fit, a0.  Thus, we have found the 95% CI , which may also be 

presented as  (column 8 in Table 4-2). 

 
We end this section by comparing the linear fit and the Bloch-Grüneisen fit (Fig. 4-6).  
The two slopes differ by up to 8% over the 80-310 K temperature range, with the linear 
fit (blue) falling in between the band of the Bloch-Grüneisen fit (red).  This indicates that 
we will both over- and under-predict the slope if we insist on a linear fit. 
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Appendix: What else? 

 

This appendix covers a variety of secondary issues which also contribute to a successful 

experiment.  We first introduce the lock-in amplifier, an important instrument which may 

be unfamiliar to some readers.  Next we discuss the effect of natural convection on the 

3w method, followed by highlighting the advantages of a four-probe AC measurement, 

and offering an op-amp circuit to convert a voltage source to a current source.  Then we 

determine the vacuum level needed in order to greatly suppress air conduction, and 

radiation shields to minimize radiation losses.  At last, we discuss material properties for 

thermal design, and give a brief introduction to the lognormal distribution.  A summary 

of the notation used in the book is also included. 

 

A.  Lock-in amplifier [1] 

 

The lock-in amplifier is a workhorse instrument used to detect small sinusoidal voltage 

signals at a known frequency.  It functions essentially as a highly adjustable band-pass 

filter combined with an amplifier.  The key feature of this filter is its extremely narrow 

bandwidth, with a quality factor (!" ∆!$%&'()'*+⁄ , where fs is the signal frequency and 

∆!$%&'()'*+  is the bandwidth) which can readily exceed 105. 

 

In the following we first outline the working principle of a lock-in amplifier and then 

highlight some of the key functions commonly used in thermal measurements at the 

nanoscale.   

 

A1.  Principle 

 

As shown in Fig. A-1, the input signal is composed of a signal of interest oscillating at an 

angular frequency ws, and background noise at all frequencies: 

.        (A-1) Vin =Vs sin ω st +φs( ) + noise
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Fig. A-1.  Principle of lock-in amplifier.  Information involving the signal’s amplitude and phase, 

, is extracted by a phase sensitive detector (PSD), which is a combination of a multiplier and 
a low-pass filter.  The depicted schematic gives the in-phase part of Vs.  The out-of-phase part can be 
determined by sending Vin into a second PSD driven by another reference signal which has a 90o phase shift 
compared to fL (not shown).  For details see main text. 
 

To detect this signal of interest the lock-in uses a concept known as phase sensitive 

detection (PSD). This begins with the lock-in generating its own reference signal,   

.         (A-2) 

The lock-in multiplies these two signals, giving  

 

           (A-3) 

To measure the signal at ws, the lock-in reference must be set so that , which is 

accomplished by phase locking the experiment to the reference, thus giving rise to the 

name “lock-in” amplifier.  Then sending the multiplied signal through a low-pass filter of 

bandwidth ∆!$%&'()'*+ ≪ 2/0/22, what remains is the DC component 

,        (A-4) 
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plus	a	residual	contribution	from	the	original	noise	contained	in	Vin	in	the	range	wL	
± 2pfc.  Usually ∆!$%&'()'*+  can be set small enough such that this residual noise is 

negligible (see section A3 below).  Thus, since VL is known, we can extract 

.  This represents the component of Vs which is in-phase with the lock-in reference. 

 

Note that virtually all commercial lock-in amplifiers include two phase sensitive 

detectors (PSDs), which are phase shifted by 90o and thus record two DC components 

.        (A-5) 

The in-phase and out-of-phase components of the original signal, often designated X and 

Y respectively, are  

,        (A-6) 

which is what the lock-in reports.  X and Y correspond to the real and imaginary parts of 

the solution of the 3w methods (e.g. red and blue symbols in Fig. 2-3).   

 

In 3w measurements the driving current is either directly taken from, or synchronized to, 

the reference signal output of the lock-in amplifier (see Fig. 2-2).  Thus the phase 

difference, , is not arbitrary but instead is determined by the thermal transfer 

function (Zw): if Zw is a pure real function, , and thus there is only X but no Y 

component; if Zw is a complex function (e.g. in a typical 3w configuration), , 

and thus there are both X and Y components. 

 

A2.  Full Scale Sensitivity & Least Significant Bit 

 

While early lock-in amplifiers implemented the process of Fig. A-1 entirely in hardware, 

in modern instruments it is now more common to immediately digitize the input signal 

Vin(t) and perform all subsequent steps in software.  In this case, the Least Significant Bit 

Vs cos φs −φL( )

VPSD1 = 1
2VsVL cos φs −φL( )

VPSD2 = 1
2VsVL sin φs −φL( )

X = VPSD1
1
2VL

=Vs cos φs −φL( )

Y = VPSD2
1
2VL

=Vs sin φs −φL( )

φs −φL

φs −φL = 0

φs −φL ≠ 0
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(LSB) is an important consideration determining the measurement detection limits.  For 

example an SR850 digitizes the input signal using an analog-to-digital converter with N = 

14 bits, and the LSB is related to the Full Scale Sensitivity (FS) by 

.          (A-7) 

 
Fig. A-2.  An example of discretization artifacts due to inadequate LSB of lock-in amplifier for a 3w 
measurement.  The true voltage vs. frequency response should be a smooth continuous function.  However, 
stepwise voltage artifacts are clearly observed, comparable to the 0.6 µV LSB which comes from a FS of 
10 mV and 14 bits of discretization. 
 

Figure A-2 shows an example in which the LSB is not adequate to detect the difference 

between the adjacent data points.  An ideal measurement with correct FS settings should 

generate a smooth linear relation between V3w and the logarithm of the driving frequency, 

as shown in the red symbols in Fig. 2-3.  However, the data depicted in Fig. A-2 show 

clear stepwise discretization artifacts spaced by ~0.5 µV, comparable to the LSB of 0.6 

µV.  The appearance of such prominent discretization artifacts as in Fig. A-2 strongly 

suggests that the FS should be reduced if possible without saturating the input of the 

lock-in. 

 

Knowing the number of bits, N, we can estimate the resolution of a resistance 

thermometer detected by a lock-in amplifier.  Assuming no background subtraction and 

that the FS value is set optimally, the detectable fractional change of electrical resistance 

can be related to N by 

LSB = FS 2N
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,          (A-8) 

and thus detectable change of temperature is 

,          (A-9) 

where a is the temperature coefficient of the resistor.   

 

Example A-1:  Estimate the resolution of a temperature sensor made of gold and 

monitored by an SR850 lock-in amplifier in the vicinity of room temperature. 

 

Solution: 

We use the literature value, aAu ~ 3.4 ´10-3 /K (pg. 602 of Ref. [2]); for an SR850, as 

stated above we have N = 14.  Thus, using Eq. A-9, we estimate the resolution to be dT ~ 

0.02 K. 

 

Note that if the sensor is microfabricated, such as the heater pattern in a typical 3w 

measurement, a could be substantially lower than the literature value. 

 

If finer temperature resolution is desired below one LSB, one effective strategy is to use a 

Wheatstone bridge or related background subtraction prior to digitization by the lock-in, 

which when carefully implemented can reduce the detection limit to below ~100 µK [3], 

[4].   Surprisingly, in principle one can also benefit by deliberately making the input 

signal noisier so that it stochastically samples multiple bit levels, followed by subsequent 

averaging.  This concept, known as “stochastic resonance,” has been applied to optical 

thermoreflectance measurements [5], though not to our knowledge for resistance 

thermometry.   

 

A3.  Time constant 

δRe
Re
~ 1
2N

δT =
δRe
Re

1
α

!
1
2N
1
α
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The most important parameter characterizing the low-pass filter of Fig. A-1 is its time 

constant, which can be defined as 

,          (A-10) 

where fc is the -3dB frequency of the low-pass filter’s transfer function.   

 

The two main issues involving the time constant are: 

(i) What te should we choose? 

(ii) After making a change to the experimental conditions, how long is the 

stabilization time, in multiples of te, required for the signal to reach its new steady 

state? 

 

For the first question, a larger te gives a smaller fc , which as noted below Eq. (A-4) is 

linearly proportional to the passband for noise sources with frequencies close to wL to 

pass through to the final VDC and cause errors.  Thus, the larger the te, the more accurate 

and stable the final measurement.  It also is generally a good idea to ensure wLte > 1.   

 

However, there is also a downside to using large te because it slows down the time to 

respond to a step change, as seen in the following answer to question (ii).  Let us analyze 

the low-pass filter, an elementary RC circuit.  Recall the capacitor discharging process 

from an initial V0: 

.         (A-11) 

Let’s estimate the time required for the most extreme step: from V0 » VFS down to the 

practical zero level V(tstabilize) » VLSB.  We have 

.        (A-12) 

Thus, the time required to stabilize is 

τ e =
1
2π fc

V t( ) =V0 exp(− tτ e
)

VLSB =VFS exp(−
tstabilize
τ e

)
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.         (A-13) 

where the last step used N = 14 for an SR850. 

 

Likewise, in a charging process, we replace Eq. (A-11) with 

,        (A-14) 

and for a step from 0 up to V(tstabilize) » VFS -VLSB, we replace Eq. (A-12) with 

.       (A-15) 

Again, we obtain the same expression as Eq. (A-13). 

 

Equation (A-13) shows how the time to stabilize a voltage change to within one LSB is 

directly proportional to te, with a multiplier of ~10 for the specific example of an SR850.  

Based on our empirical experience, to be conservative we typically use a multiplier of 

tstabilize/te » 15 - 20 in a practical measurement.  This rapidly becomes a major 

inconvenience for te > 10 s.   

 

Summarizing the competing effects on te, as a rule of thumb te ~ 0.3 s - 1 s is a good 

starting point in a practical measurement.  However, te must be increased in certain 

circumstances.  For example, in a 3w measurement of a material with low thermal 

diffusivity, if a large penetration depth is desired it may be necessary to drive the heater 

with low frequencies, e.g. ~0.1 Hz, in which case we must increase te > 1 s.  

 

A4.  Dynamic reserve 

A lock-in amplifier’s Dynamic Reserve (DR) relates the maximum tolerable noise signal 

(Vmax-tolerable-noise) to the full-scale signal (VFS) as 

tstablize = τ e ln
VFS
VLSB

= τ e ln 2
N

≈10τ e

V t( ) =V0 1− exp(− tτ e
)

⎡

⎣
⎢

⎤

⎦
⎥

VFS −VLSB =VFS 1− exp(−
tstablize
τ e

)
⎡

⎣
⎢

⎤

⎦
⎥
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,       (A-16) 

which has units of dB.  For example, if we set a Full Scale Sensitivity of VFS = 10 mV, 

and DR = 30 dB, we would be able to tolerate a noise background as large as  

.   

 

Here “noise” must be understood to include any background signal, whether broadband 

or a smooth sine wave.  The latter is especially relevant for 3w measurements, because 

the small 3w signals are accompanied by 1w voltages which are routinely 100x to 1000x 

larger.  Although this large 1w background is most commonly dealt with using a separate 

hardware subtraction circuit (e.g. Fig. 4 of Ref. [6]), in special cases it has been shown 

possible to forego the background subtraction circuit by taking advantage of a carefully-

chosen dynamic reserve setting in a lock-in amplifier [7]. 

 

One caution is that it can also be problematic if the DR is set too high.  One issue is that 

high DR also increases the detection limit VLSB, degrading the accuracy of small signal 

measurements.  At ultra high reserves, even the lock-in’s own output noise may become 

detectable (pg. 3-18 of Ref. [1]). 

 

Taking into account the above considerations, a suggested routine in a practical 

measurement, e.g. measuring the 3w voltage without any background subtraction, is as 

follows.  Starting with a fairly large DR, we first set the FS to be just larger than the 

largest expected amplitude of V3w.  Then we gradually reduce the DR to find a minimum 

DR which can still tolerate the background noise including 1w background without 

overloading the lock-in’s input.  Even for a constant input signal measured without 

overloading, changing the FS and DR settings can also slightly change the reported 

voltages.  Therefore, we find best practice is to hold the FS and DR settings constant for 

all V3w measurements over the entire range of frequencies, 1w currents, and temperatures 

studied for a given sample.  This requires some forethought about the extreme values of 

V1w and V3w expected, so the FS and DR can be set to accommodate all scenarios.   

DR = 20log10
Vmax−tolerable−noise

VFS

⎛

⎝⎜
⎞

⎠⎟

 Vmax−tolerable−noise =VFS ⋅10
DR 20 ! 316mV



	 Append-9	

A5.  Johnson noise 

 
Fig. A-3.  Voltage noise from three different resistors, connected directly across the measurement terminals 
of a lock-in amplifier without any driving current source.  The voltages in parentheses are the 
corresponding Johnson noise values for each of the 3 resistors.  While the root mean square voltage (VRMS) 
noise from the 50 W (green solid line) and 1 kW (pink symbol) resistors are down around the lock-in’s own 
noise floor (black dashed line), especially at high frequencies, the larger Johnson noise from the 1 MW 
resistor (blue solid line) is clearly above the floor. 
 

Johnson noise is a fundamental result of thermal fluctuations.  For large resistors, we can 

detect this Johnson noise using a lock-in amplifier.  The root mean square (RMS) value 

of a voltage generated by Johnson noise can be expressed as 

,       (A-17) 

where fENBW is the equivalent noise bandwidth (ENBW) of the lock-in amplifier, which 

can be linked to the time constant (te) as 

          (A-18) 

for a single stage low-pass RC filter with 6 dB/octave roll off.  Note here fENBW is not 

exactly the same as in Eq. (A-10), differing by a factor of 1.57.  The noise 

density rJohnson-noise is defined as 

,         (A-19) 

where kB is the Boltzmann constant, T is the absolute temperature, and Re is the electrical 

resistance of the resistor.  For example, at room temperature we have rJohnson-noise = 0.91, 

4.1, and 130 nV/ÖHz for a 50 W, 1 kW, and 1 MW resistor, respectively. 
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A representative lock-in amplifier, the SR850, has a specified input-referred noise floor 

of 5 nV / ÖHz (pg. 3-19 of Ref. [1]).  Thus, with te = 0.2 s so that fENBW = 1.25 Hz, any 

external noise (or indeed signal) higher than 5.6 nV should be detectable; otherwise it 

will be overwhelmed by the instrument’s own noise.  This is consistent with the 

measurements in Fig. A-3: while VJohnson-noise = 1.0 and 4.5 nV for the 50 W (green solid 

line) and 1 kW (pink symbol) resistors are entangled with the input noise floor (black 

dashed line), VJohnson-noise = 142 nV for the 1 MW resistor (blue solid line) is clearly 

distinguished. 

 

This Johnson noise voltage has also been used as a thermometer to detect the temperature 

of a resistor of known resistance, although this requires more sophisticated hardware [8], 

[9].  

 

B.  Effect of natural convection on the 3w method 

 

 
 
Fig. B-1.  A typical heater-on-substrate configuration (a), and a corresponding simplified thermal circuit 
(b), to analyze the effect of natural convection on a measurement of thermal conductivity. 
 

We may wonder how natural convection would affect the results of the 3w method in a 

standard laboratory environment, especially when we are not equipped with a high-

vacuum cryostat, or when we want to conduct a quick and dirty measurement outside the 

cryostat at room temperature. 
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We consider a typical scenario, a line heater on top of a solid substrate (Fig. B-1a).  The 
corresponding thermal circuit is shown in Fig. B-1b: heat leaks parasitically upwards 
through natural convection, in addition to the preferred pathway of conduction down 
through the solid. 
 
In order to quantify the effect of natural convection, we can introduce a Biot number, 

,          (B-1) 

where Rcond’n and Rconv’n are the thermal resistance of the bottom solid and the top air, 
respectively.  Only if this Bi << 1 can the losses through natural convection be safely 
neglected.  
 
We now model Rconv’n and Rcond’n, focusing on the in-phase response.  First, re-arranging 
Eq. 2-13, we obtain the conductive thermal resistance through the bottom solid as 

,        (B-2) 

where h » 0.923 [10].   
 
As discussed with Eqs. 2-13 and 2-14, Eq. B-2 represents a modification of a DC 
cylindrical heating problem (pg. 69 of Ref. [11]), to a hemi-cylinder, with the inner radius 
as the half width of the line heater, b, and the outer radius as the penetration depth, 

, in which Ds is the thermal diffusivity, and  is the frequency of 

the periodic heating.  
 
Next, we estimate the convective thermal resistance through the upper air as 

,         (B-3) 

in which we approximate the heated surface area of the top of the substrate as a rectangle 
of length l and width 2Lp. 
 
Combining the three equations above, we obtain 

.        (B-4) 

 
Recalling the typical analysis of the convective heat transfer, we have the Nusselt number 
defined as 

Bi = Rcond 'n
Rconv 'n

Rcond 'n =
1

π lksub
ln
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b
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,          (B-5) 

where D is the effective breadth of the heated zone, which physically should be 
somewhere between 2b and 2Lp. 
 
Thus, we have 

.       (B-6) 

 
Now the key is to estimate the Nusselt number, NuD.  As an order of magnitude estimate, 
we consider natural convection from horizontal isothermal cylinders, with a Nusselt 
number (pg. 418 of Ref. [11]) 

,       (B-7) 

where  is the Prandtl number, and the Rayleigh number is defined as 

,         (B-8) 

where g is the gravitational constant, and  and Dair respectively are the kinematic 
viscosity and thermal diffusivity of the surrounding air. 
 
Combining Eqs. B-6 to B-8, we have , where n is between 1/4 to 1.  For a 
conservative estimate, here we consider our smallest estimate for D, approximating D» 
2b rather than 2Lp (Section 2-1-1). 
 
For a typical microfabricated line heater with D = 2b ~ 10 µm, and a preferred  ~ 
1%, for air at room temperature Eq. B-7 is dominated by its 1st term.  Substituting this 
into Eq. (B-6), we have 

.       (B-9) 

 
For a conservative estimate (erring on the side of large Bi, since small Bi is desired to 
neglect convection), we consider a poor thermal conductor, such as SiO2, and a low 
frequency (1 Hz), which gives .  The result is Bi < 1´10-2.  Thus, since Bi << 1, 

we can safely neglect the parasitic heat losses through natural convection at room 
temperature. 

NuD ≡ hD
kair

Bi =
NuD
π
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We close by commenting on two shortcomings of the analysis above.  First, Eq. B-7 is 
for a freestanding cylinder.  In the scenario of Fig. B-1, the convection coefficient, h, 
should be significantly reduced, because the surrounding substrate impedes the fluid flow 
as compared to a free cylinder.  This overestimation of h means that the above analysis 
was conservative (tending to overestimate Bi).  Second, note also that Eq. B-7 was stated 
to be valid only for RaD ≥ 1´10-6.  However, here we have RaD ≈ 0.3´10-6 at room 
temperature for the conservative estimate D = 2b.  Considering the very large factor of 
safety in Bi just estimated, it is still reasonable to use Eq. B-7 for an order-of-magnitude 
estimate. 
 

C.  Advantages of a 4-point probe AC measurement 

 
 
Fig. C-1. Advantages of a four-probe AC measurement.  (a) A conventional two-probe measurement driven 
by a direct current suffers from two error sources: thermoelectric EMFs at the junctions between dissimilar 
metals (represented by Vs1 and Vs2), and ohmic voltage drops across long leads and at the contacts 
(represented by Re,LC1 and Re,LC2).  (b) An AC measurement is immune from the thermoelectric EMFs.  (c)  
A four-probe AC measurement is immune from both error sources.  In practice, the AC voltages should be 
measured with a lock-in amplifier, which has much better sensitivity and frequency selectivity than a 
general purpose digital multimeter.    
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The accuracy of a resistance thermometer depends on the accuracy of the resistance 
measurement at various temperatures.  Figure C-1 shows a schematic (left) and the 
corresponding circuit (right) of three different schemes to measure the electrical 
resistance of a microfabricated resistive thermometer. 
 
The two-probe DC method depicted in Fig. C-1a is not uncommon in general-purpose 
resistance measurements in the lab, for example, using a Digital Multi-Meter (DMM) in 
two-wire mode.  However, for precision resistance thermometry applications such a two-
probe method may introduce large errors, especially if the experiment involves long leads 
or low temperatures. 
 
There are two major error sources in Fig. C-1a.  The first one is the Seebeck effect.  It is 
very common that the lead wires and the micro-thermometer are made of two different 
materials, for example copper and gold, thereby forming a thermocouple at every 
junction.  If temperature differs between these junctions, a net thermal EMF is generated 
(e.g., Vs1 not cancelling Vs2 in Fig. C-1a).  The DC voltmeter cannot distinguish these 
undesired thermal EMFs from the desired ohmic voltage across the resistive thermometer 
Re,sampl.  Because the Seebeck voltage scales with temperature difference, these errors 
tend to be largest in experiments involving large temperature differences, such as 
between room temperature and a cryogenic sample stage, or room temperature and a high 
temperature stage.  Compared to metals, the Seebeck coefficient also can be much larger 
in semiconductors and some contact pastes, which can also increase these errors if they 
are part of the circuit path.   
 
The second source of error in Fig. C-1a comes from the electrical resistance of the long 
leads and the electrical contact resistances at the lead-thermometer junctions.  In the 
circuit in Fig. C-1a (right), we combined these two components and labeled them as 
Re,LC1 and Re,LC2.  Electrical current flowing through these resistances generates undesired 
voltages, which again the voltmeter cannot separate out from the desired voltage drop 
across Rsampl.  Clearly Re,LC becomes larger when the leads are thin, long, and made from 
metals of high electrical resistivity.  One example is again cryogenic measurements, 
where long metallic leads with low thermal conductivity are sometimes selected in order 
to reduce parasitic heat losses by conduction.  However, for such metal wires, low 
thermal conductivity comes with high electrical resistivity due to the Wiedemann-Franz 
law (Eq. 3-26). 
 
To eliminate the errors caused by thermal EMF, we switch from the DC measurement to 
an AC measurement (Fig. C-1b).  The key here is the fact that the ohmic voltages follow 
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the frequency of the driving current, while the temperature differences which cause the 
thermal EMFs are generally low-frequency drifts close to DC.  Thus, by focusing only on 
the AC response, now the AC voltmeter can exclude the thermal EMF effects.   
 
To eliminate the errors caused by the ohmic voltage drops along the long leads and 
contacts, we switch from two-wire measurement to four-wire measurement (Fig. C-1c).  
This separates the voltage probes from the current probes, and thus the AC voltmeter 
does not see these undesired voltage components.  Although the voltage probe leads also 
have finite resistance (Re,LC3 and Re,LC4 in Fig. C-1c), there is virtually no current flowing 
through them, so those additional voltage drops are negligible.   
 
To conclude, applying AC measurements in a four-probe configuration like Fig. C-1c is 
the standard for electro-thermal measurement methods as discussed in this book, because 
this eliminates errors from both thermal EMFs and the lead and contact resistances.  It is 
strongly recommended that the “AC Voltmeter” function in Fig. C-1 be implemented 
with a lock-in amplifier rather than a general purpose DMM in AC volts mode, because 
the former can be locked specifically to the frequency of the AC current source with a 
very tight bandwidth and has much better sensitivity and frequency selectivity.  These 
features allow a lock-in to exclude additional noise sources such as 50 Hz / 60 Hz from 
the power lines and various artifacts related to joule heating, which occurs at twice the 
frequency as the driving current.   
 
Example C-1: Constantan is sometimes used for lead wires inside a cryostat, due to its 
low thermal conductivity and low temperature coefficient of resistivity.  However, 
constantan is also a common material for thermocouples, due to its fairly high (negative) 
Seebeck coefficient. 
 
(a) Look up the electrical resistivity of constantan at room temperature, and estimate the 
corresponding electrical resistance for a 1-m long lead wire with a diameter of 5 mil.  
How reasonable would it be to neglect this RL as compared to that of a typical 
microfabricated thermometer (Rsampl ~ 10 W)?  
 
(b) Similarly, find the Seebeck coefficients of constantan and copper, and estimate the net 
thermal EMF arising from a constantan lead which connects a copper thermometer at 600 
K to additional copper wiring at room temperature.  Can we neglect this voltage when 
using sensing currents in the range 0.1 mA to 1 mA? 
 
Solution: 
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(a) The resistivity of constantan at room temperature is r=4.9´10-7 W-m (pg. 29 of Ref. 
[12]), and so the wire’s electrical resistance is = 39 W.  Note that this is even 
larger than the typical Rsample, and thus certainly cannot be neglected.   
 
(b) The Seebeck coefficients of constantan and copper are -50 µV/K and 3.5 µV/K, 
respectively, averaged from room temperature to 600 K (pg. 31 of Ref. [12]).  The total 
thermal EMF of the junction is  

= 16 mV.  Note that this is even larger than the voltage generated by a typical sensing 
current of 0.1 to 1 mA through the 10 W sample and thus certainly cannot be neglected. 
 
From this example, an AC, 4-probe measurement is mandatory for accurate resistance 
thermometry. 
 
 
D.  Voltage to current conversion 

 
Fig. D-1.  A voltage-to-current op-amp circuit.  The input is a voltage (Vsin-out) provided by a lock-in 

amplifier, which is converted to a current through the sample (R4), according to .  The 

key feature is that this sample current is independent of the sample resistance. 
 

 

The 3w method assumes the sample is driven by an ideal sinusoidal current source, and 

the resulting 1w and 3w voltages are measured using a lock-in amplifier (see Fig. 2-2).  

Although commercial AC current sources have recently become available (e.g., Keithley 

6221), for simplicity and lower cost it is appealing to drive the 3w circuit using the lock-

in amplifier’s own sine wave output.  However, that output is a voltage source, typically 

with a non-negligible 50 W output impedance.  Although in principle the standard 3w 

analysis can be corrected for a driving voltage source [7], [14], it may be more 

straightforward to instead convert the voltage source to a current source. 
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Figure D-1 presents a simple op-amp circuit [13] which converts the voltage reference 

from the lock-in amplifier (Vsin-out) to a current (I4) flowing through the sample (Re,4).  

The key feature is that this current 

         (D-1) 

does not depend on R4. 

 

Example D-1:  

Recall the two assumptions for an ideal op-amp: 

(I) There is no current flowing in / out of the “+” and “-” terminals; 

(II) A feedback forces V+ = V-. 

Apply this ideal op-amp model to the schematic of Fig. D-1 to derive Eq. (D-1).  
 
Solution: 
 
Applying the first rule to the left op-amp, we have 

. 

Applying the second rule to the left op-amp, we have 

; 
Combining these two equations, we obtain 

. 

Likewise, applying the two rules to the right op-amp, we have 

. 

Now eliminating VC from these last two equations, we obtain 

, 

and thus 

I4 = −
Re ,2
Re ,1Re ,3

Vsin−out

VA −VB
Re ,1

=
VB −VC
Re ,2

VB = 0

VC = −
Re ,2
Re ,1
VA

VE = −
Re ,4
Re ,3
VC

VE =
Re ,2
Re ,1

Re ,4
Re ,3
VA



	 Append-18	

. 

Note that VE has dropped out of the analysis, though in practice it is connected through 

some low-resistance pathway to ground, e.g. to the negative terminal of the lock-in’s sin-

out port.    

As a concrete example, we sometimes use Texas Instruments OPA551 for the op-amps, 

with Re,1 = 1 kW, Re,2 = 10 kW, and Re,3 = 100 W.  In this case, if we set Vsin-out = 1 V, the 

corresponding current flowing through the sample (Re,4) is 100 mA, with a 180 degree 

phase shift.   

 
E.  Cryostat and vacuum level 

 
Fig. E-1.  Schematic of parasitic heat losses between a sample stage at temperature Tsampl and the walls of 
the vacuum chamber at Tchamber.  Here radiation and rarefied gas conduction are parallel heat transfer 
pathways.    
 
To minimize parasitic heat losses from convection, and to ensure a stable cryostat 
environment with minimal cryogen consumption, thermal measurements at the nanoscale 
are commonly conducted in vacuum.  Correspondingly, one frequently asked question is 
whether a cheap roughing pump is adequate for this purpose, or if an expensive high-
vacuum pump is needed. 
 
Because radiation and air conduction are parallel pathways, let's analyze the requirements 
for the parasitic air conduction losses to be at least an order of magnitude smaller than 
those through radiation, since there is little benefit in further reducing the air conduction 
beyond that point. 

I4 =
0 −VE
Re ,4

= −
Re ,2
Re ,1Re ,3

VA

= −
Re ,2
Re ,1Re ,3

Vsin−out

Lc	
Sample	stage	

Vacuum	chamber	
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We first estimate the relative importance of these two heat transfer modes.  Referring to 
Fig. E-1, for air conduction we have a heat transfer coefficient 

,          (E-1) 

where kair is the thermal conductivity of air and Lc is the characteristic length of the 
chamber, e.g. the gap between the sample stage and the chamber walls.   
 
Recalling Eq. 3-6, for radiation driven by a small or moderate DT, where 

 is the temperature difference between the sample and the chamber 

walls, we have (pg. 75 of Ref. [11]) 
,         (E-2) 

where  is the emissivity of the sample, Wm-2K-4 is the Stefan-Boltzmann 

constant, and .  This linearized expression is a reasonable 

approximation for DT up to ~Tavg/2.  It also approximates the chamber walls as black 
and/or having a surface area much larger than the sample itself, and hrad’n could be greatly 
reduced further by surrounding the sample by one or more radiation shields (Appendix 
F). 
 
As a concrete example, consider the schematic in Fig. E-1.  Near room temperature, we 
have hrad’n » 0.6 W/m2-K for a shiny metal sample stage, and hcond’n » 3 W/m2-K for Lc ~ 
1 cm.  Based on these estimates, the conduction losses are larger than the radiation losses, 
so it would be worthwhile to evacuate the system to suppress the air conduction to hcond’n 
<< hrad’n. 
 
To explore how vacuum can suppress air conduction, we start from the well-known 
kinetic theory expression for the thermal conductivity 

,           (E-3) 

where C, v, and L are the volumetric heat capacity, velocity, and mean free path (MFP) 
of air molecules, respectively [15][16].  The dominant phenomena can be understood by 
approximating air as a monatomic ideal gas, in which case these parameters scale with 
respect to air pressure as: 

           (E-4a) 

           (E-4b) 

.          (E-4c) 
 

hcond 'n =
kair
Lc

ΔT = Tsampl −Tchamber

hrad 'n = 4εσTavg
3

ε σ = 5.67 ×10−8

Tavg = Tsampl +Tchamber( ) 2

k = 1
3CvΛ

C ~ p1

v ~ p0

Λ ~ p−1
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Fig. E-2.  Thermal conductivity, k, of an ideal gas as a function of pressure, p, understood through kinetic 
theory.  From top to bottom, the four rows depict the pressure dependence of C, v, L, and k, respectively, 
all on log-log axes.  (a) In an ideal system of infinite size, k is independent of p.  (b) In a realistic system 
with finite size (red lines), k does depend on p due to truncation of L by the characteristic length, Lc, such 
as the gap shown in Fig. E-1.  (c) and (d) are a graphical interpretation of finding a final pressure pf to 
achieve a required low thermal conductivity kf.  (c) Focusing on the L(p) plot, move from atmospheric 
pressure, p0, to the characteristic transition pressure, pc, at which L ~ Lc.  (d) Then in the k(p) plot, move 
from pc to pf  using .  Combining (c) and (d) gives a guideline to the final pressure: 

, where the first fraction on the right hand side represents the initial pumping effort to 

reach the transition point, and the second fraction represents the additional pumping effort to reduce the 
thermal conductivity of the air. 
 
Together, Eqs. (E-3) and (E-4) imply that the thermal conductivity does not depend on 
pressure (Fig. E-2a), indicating that there is no benefit whatsoever to applying a vacuum 
pump!  However, this conclusion is true only for a system with infinitely large Lc.  For a 
real system, L cannot exceed the finite Lc (Fig. E-2b); that is, at sufficiently high vacuum 
L is truncated to ~Lc.  This breaks the pressure scaling given in Eq. (E-4c), and instead 

 at sufficiently high vacuum.  This is the reason why pumping to high vacuum can 
indeed reduce hcond’n . 
 
Finally, we derive a simple estimate for the vacuum level needed to reduce the gas 
thermal conductivity to a desired level.  Consider pumping down a vacuum chamber from 
atmospheric conditions, corresponding to initial thermal conductivity, pressure, and MFP 
of k0, p0, and L0, respectively.  At first, there is no reduction in thermal conductivity, until 
some characteristic pressure, pc, at which L has increased to ~Lc.  From Eq. (E-4c) and 
Fig. E-2c, we can easily estimate this characteristic transition point as 

.          (E-5) 
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Then during further pumping to a final pressure pf << pc, the system is in the rarefied gas 
regime of  (Fig. E-2d), so that we have 

,          (E-6) 

where kc (» k0) is the thermal conductivity at the transition point, and kf is the target 
thermal conductivity. 
 
Combining Eqs. (E-5) and (E-6), we have 

.  (p << pc)      (E-7) 

This form has been written to emphasize the two main phenomena: the first grouping on 
the right hand side represents the initial pumping effort to reach the characteristic 
transition pc, and the second grouping represents the additional effort to reduce the 
thermal conductivity of the air. 
 
Example E-1: Consider air at 1 atm and 300 K, and take its MFP to be L0 » 150 nm (pg. 
28 of Ref. [16]).  (a) For a characteristic length of Lc = 1 cm, estimate the characteristic 
pressure to transition between k=const. and  regimes.  (b) What vacuum level is 
needed to suppress the air conduction by a factor of 100?   
 
Solution: 

(a) From Eq. (E-5),  = 1.5x10-5 atm = 1.1x10-2 Torr.  This may be 

reached with some roughing pumps.   
 
(b) From Eq. (E-6) with kf / k0 = 0.01, we need to reduce the pressure by another factor of 
100 below pc, and thus  
Pf ~ 1.1 ´ 10-4  Torr. 
This is too low for a roughing pump, so we will need a high vacuum pump. 
 
F.  Radiation shields 
 
In Section 3-1-1, we concluded that radiation losses from the top surfaces of the 
microfabricated electrodes and the sample are usually negligible at and below room 
temperature.  However, this might not be the case for high temperature measurements 
since  could be enhanced from 6.1 W/m2-K to 227 W/m2-K (see Eq. 3-6) if 

k ~ p1
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k f
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increasing the average temperature from 300 K to 1000 K, which may no longer be 
negligible as compared to  (Eq. 3-14). 
 
If the radiation loss is deemed unacceptably high, a common strategy to reduce it is to use 
one or more radiation shields.  For N concentric shields the radiative heat transfer can be 
expressed as [17] 

,      (F-1) 

in which  are the emissivities of the sample, the i-th radiation shield, and 

the environment, respectively, and likewise for the areas A of each of these components.    
 
For tightly concentric shields placed close to the sample, where all of the gaps between 
the adjacent shields are small compared to the nominal diameter of the sample, we may 
obtain a linearized radiative heat transfer coefficient 

,      (F-2) 

where the numerator is Eq. (3-6) and the denominator represents a reduction factor.  As 
an example, for a black sample and environment at room temperature, even a single shiny 
shield with  = 0.1 will reduce the heat transfer coefficient from 6.1 W/m2-K to 0.31 
W/m2-K, a reduction factor of 20. 
 
For clarity, we focus on a one-shield scenario (Fig. F-1) to illustrate a key point in 
common experiments where the heated sample is much smaller than the environment.  In 
this case, we require the diameter of the shield to be as close as possible to the diameter 
of the sample (Fig. F-1a), instead of the environment (Fig. F-1b).  This is very important 
for the shield to actually reduce the radiation heat losses, which can be seen from Eq. F-1 
because the terms involving the shield(s) tend to vanish as As,i >> A. 
 
Note that the discussion above corresponds to a “thermally floating shield,” which is 
thermally decoupled from the surroundings except for the obvious radiation interactions 
already contained in Eqs. F-1 and F-2.  On the other hand, in both commercial cryostats 
and home-built customizations, the radiation shield(s) may be deliberately thermally 
anchored to some intermediate temperature, rather than floating.  In the best case the 
shield temperature can even be tied (passively or even actively) to match the sample 
temperature, a so-called “guarded” or “driven shield” (Fig. F-1c) [18]. In principle this 
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can completely eliminate the radiation losses because once  no radiation heat can 

leave the sample, regardless of . 

 
 

 
Fig. F-1.  “Floating” (a,b) vs. “guarded” shields (c).  (a) A preferred design, in which the diameter of the 
shield is chosen to be as small as possible, thereby minimizing the radiative heat losses from the heated 
sample.  (b) A poor design, because a large shield is much less effective at reducing the radiative heat 
losses.  The diameter effects in (a,b) are apparent from Eq. F-1.  (c) A “guarded” shield is actively 
controlled to maintain Ts = T.  In principle this offers perfect thermal radiative insulation of the sample, 
because from fundamental thermodynamics once Ts = T, no heat can flow between the sample and the 
shield. 
 
G.  Material properties 
 
When working on the thermal design stage of a new experiment, it is helpful to have 
order-of-magnitude estimates for the thermal properties expected of the sample, as well 
as collecting information about the thermal properties of the other relevant materials in 
the test structure.  For example, in the heat spreader method as shown in Fig. 1-8 and 
discussed in Sections 1-7, 2-2-2F, and 3-1, making reasonable estimates of the thermal 
conductivities of the graphene flake and the bottom oxide layer, before the test structure 
is ever fabricated, is helpful for sizing the gaps between the thermometer lines. 
 
In this section, we first briefly comment on the range and the underlying physics of three 
thermal properties of general interest, namely, the heat capacity, the thermal conductivity, 
and the thermal boundary resistance.  For readers seeking more detail, we offer a few 
references commonly used in the nanoscale heat transfer community.   We close by 
briefly commenting on the so-called “classical size effect,” which can dramatically 
reduce the thermal and electrical conductivities of nanostructures as compared to their 
bulk counterparts. 
 
G1.  Heat capacity 
 

Ts = T

shieldsnradh -'

Sample
( !, T )

Shield
( !s, Ts )

Environment
( !∞, T∞ )

Ts ≈T
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Around room temperature and above, the heat capacity for most fully dense materials is 
~3 ´ 106 J/m3-K, with variations of around a factor of 3 (see Fig. 4.11 of Ref. [19]).  This 
very helpful rule of thumb is relevant for all types of dense materials, including metals, 
dielectrics, and polymers, whether crystalline or amorphous, bulk or nanostructured.  The 
underlying physics is the DuLong–Petit limit of the phonon heat capacity, which holds 
for temperatures higher than about half of the Debye temperature, and gives [20]  

,          (G-1) 

where kB is the Boltzmann constant and h is the number density of atoms.  The key is that  
h~1-10x1028 m-3 for the vast majority of fully dense solids,  
 
For lower cryogenic temperatures, the Debye model is standard for the heat capacity.  
Note that even in metals, the total heat capacity is dominated by phonons down to T~1 K, 
even though a metal’s thermal conductivity is dominated by its electrons [16][20][21].   
 
One helpful reference for heat capacity data of bulk materials is a classic handbook 
series, Thermophysical Properties of Matter, edited by Y. S. Touloukian [22].  In 
particular, Volumes 4 – 6 summarize numerous experimental results for metals and 
nonmetals, in solid, liquid, and gas phase.  Other helpful references include the 
Thermophysical Properties of Matter Database (TPMD) [23] which builds on [22] and 
the Landolt-Bornstein Database [24]. 
 
G2.  Thermal conductivity 
 
The thermal conductivity of common fully dense solids at room temperature spans only a 
fairly modest range as compared to the tremendous range of electrical conductivity.  For 
example, a typical polymer may have k as low as ~0.1 W/m-K, while the classic ultra-
high-k material, diamond, has k around 2000 W/m-K.  Thus the dynamic range of k is 
around 4 orders of magnitude.  In comparison, the range of electrical conductivity in 
common materials spans over 25 orders of magnitude (see for example Fig. 4.10 of Ref. 
[19]). 
 
Pushing these extremes of thermal conductivity is one of the research drivers for the 
nanoscale heat transfer community [25].  At the high-k end, the challenge of measuring k 
of an individual carbon nanotube inspired the development of one of the signature 
measurement techniques, the suspended microfabricated device method [26]–[29], as 
discussed in Section 1-3 and 2-2-2A.  At the low-k end, a groundbreaking experiment 
demonstrated k in one direction of a fully dense solid to be ~0.06 W/m-K at room 
temperature, within a factor of two of the thermal conductivity of air [30].  With these 

C = 3ηkB
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developments in the nanoscale heat transfer community, the range of thermal 
conductivity at room temperature is now approaching 5 orders of magnitude. 
 
References [22] (Volumes 1 – 3), [23], and [24] are again highly recommended resources 
for bulk thermal conductivity data.  In addition, David Cahill has shared some of his 
group’s experimental results for bulk materials and thin films online [31].   
 
G3.  Thermal boundary resistance 
 
The thermal boundary resistance  is defined as the temperature difference across an 

interface per unit heat flux, and is the most common quantity used to characterize 
interfacial heat transfer.  For high-quality, atomically intimate interfaces with at least one 
side non-metallic,  is limited by the phonon contribution, which ranges from ~10-9 m2-

K/W [32] to ~10-7 m2-K/W [33], [34].   High-quality metal-metal interfaces can have 
even lower , from ~10-9 m2-K/W to ~10-10 m2-K/W [35].  The effect of this boundary 

resistance is equivalent to the thermal conduction resistance of an amorphous silicon 
dioxide layer with thickness varying from several to hundreds of nanometers [36]. 
 
If the interface quality is less than outstanding, for example due to contamination, 
damage, oxidation, or other impurity phases, the transmissivity of energy carriers can be 
greatly degraded, and further increases in  by an order of magnitude or more are not 

surprising.  Interfaces formed by joining two initially distinct pieces of matter almost 
always have orders of magnitude higher  [37], though exceptions are known [38].   

 
A recent review of phonon-dominated boundary resistances for 34 materials pairs with 
high-quality interfaces suggests the following rule of thumb [34], [39] for the best-case 
(lowest) , 

 ,          (G-2) 

where  
 .         (G-3) 

Here a is an averaged transmission coefficient, empirically found to range from ~0.2 - 
0.5 for high-quality interfaces [34], [39], C can be reasonably approximated with the 
DuLong-Petit heat capacity from Eq. (G-1), vs is an averaged sound velocity, and Eq. (G-
3) uses the minimum value after evaluating each material separately.    
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Readers interested in further understanding of the thermal boundary resistance at 
atomically intimate interfaces are referred to dedicated review articles [34], [40], [41]  
and additional discussion in [36], [42]. 
 
G4.  Very brief note about size effects on the thermal and electrical properties of 
nanostructures  
 
As their characteristic lengths shrink to micro- and nanoscales, the thermal and electrical 
properties of nanostructures may differ greatly from those of their bulk counterparts, due 
to the truncation of the bulk mean free paths of the corresponding energy / charge 
carriers.  This is the same fundamental mechanism as introduced in the vacuum chamber 
example of Fig. E-2, which generalizes to heat conduction by phonons, photons, and 
electrons.  Understanding such size effects in nanoscale heat transfer is a major topic of 
contemporary research which is covered in depth in various specialist textbooks [15], 
[16], [43], [44] and related collections [42], [45]–[47].  Here we only give the briefest 
taste, to emphasize that the material properties used to design and interpret a 
micro/nanoscale experiment may differ tremendously from the handbook values.    
 
As an example from the thermal domain, many of the techniques presented in this book 
rely on microfabricated silicon for some component of the measurement platform, so it is 
important to understand that k of silicon micro- and nano-structures can be much lower 
than bulk handbook values.  For example, the in-plane k of Si films with thicknesses 
below ~20 nm is over 5x lower than k of an intrinsic silicon wafer [48].  Similarly 
dramatic reductions are seen for Si nanowires (e.g 10x reduction for diameters below ~30 
nm [49]) and nanocrystalline Si (e.g. 5x reduction in k for grain sizes below ~100 nm 
[50]).  Thermal conductivity reduction factors over a broader range of length scales may 
be found in Fig. 5 of [51] and Figs. 7 and 8 of [52].  These reduction factors are for k 
around room temperature, increasing by orders of magnitude at cryogenic T.   
 
Similar issues arise in the electrical properties of microfabricated metals.  For example, 
due to the additional scattering of electrons by the film surfaces and internal grain 
boundaries, the room temperature resistivity of a ~200-nm wide, 50 nm thick gold heater 
line (see Fig. 3-4) is ~3× higher than handbook values [53].  This additional scattering 
also acts to reduce the temperature coefficient of resistance, causing this same line to 
have an a which is ~2× lower than handbook values.  Both effects can be calibrated for 
any given microfabricated heater line, and indeed generally must be in order to succeed at 
the high accuracy resistance thermometry which underlies all of the techniques in this 
book.   
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H.  The lognormal distribution [54] 
 
As discussed in the Monte Carlo method of uncertainty analysis (Section 4-3), for a 
parameter with large uncertainty it often makes more sense to assume it follows a 
lognormal rather than normal probability distribution, thereby ensuring its value can 
never be negative.  The lognormal distribution for a random variable x is defined as 

,       (H-1) 

where x>0.  This distribution is specified by the two parameters µ and s, which are the 
logarithmic mean and logarithmic standard deviation, respectively.  It is important to note 
that the logarithmic mean is not the same as the conventional (arithmetic) mean, nor are 
the logarithmic and conventional standard deviations the same.  However, they are easily 
related.   
 
To see this, we first evaluate the (arithmetic) mean of the above distribution, 
    .       (H-2) 

 
Similarly, evaluating the standard deviation of Eq. (H-1), 

.       (H-3) 

It is more helpful to consider the relative standard deviation, which is purely a function of 
s,  

.           (H-4).   

 
It is also insightful to consider the limiting behavior of the lognormal distribution for 
tight distributions.  Considering , to leading order we find 

           (H-5) 
and  

.           (H-6) 

These approximate forms are helpful for developing intuition about the relationships 
between logarithmic and conventional means and standard deviations.     
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