

How to preserve the Kramers-Kronig relation in inelastic atomistic quantum transport calculations

Daniel Lemus^{1,}

James Charles¹, Tillmann Kubis^{1,2,3,4}

¹School of Electrical and Computer Engineering, Purdue University, W. Lafayette, IN, USA ²Network for Computational Nanotechnology, Purdue University, W. Lafayette, IN, USA ³Purdue Center for Predictive Materials and Devices, W. Lafayette, IN, USA ⁴Purdue Institute of Inflammation, Immunology and Infectious Disease, W. Lafayette, IN, USA

$$G^{R} = (E - H - \Sigma^{R})^{-1}$$
$$G^{<} = G^{R} \Sigma^{<} G^{R^{\dagger}}$$

Self-energies represent external perturbations in atomic devices

- Electrons entering/exiting device (lead/contact self-energy)
- Incoherent scattering phenomena, e.g., phonons

Mode space rank reduction

Clever mode filtering method detailed in: G. Mil'nikov, et al., "Equivalent transport models in atomistic quantum wires," Phys. Rev. B, vol. 85, no. 3, p. 035317, Jan. 2012.

3 nm × 3 nm cross section device using 10-orbital tight binding: ~3000 × 3000 matrices (single unit cell) $O(N^3) = 2.7 \times 10^{10}$ operations

> 3 nm × 3 nm device using 100 modes: 100×100 matrices $O(N^3) = 10^6$ operations

Rank reduced by ~97% **3%** <u>reduction ratio</u>

Huge reduction in computational complexity

A. Esposito, M. Frey, and A. Schenk, "Quantum transport including nonparabolicity and phonon scattering: Application to silicon nanowires," J. Comput. Electron., vol. 8, no. 3–4, pp. 336–348, 2009.

$$Im[\Sigma^{R}(E)] = \frac{1}{2}(\Sigma^{>}(E) - \Sigma^{<}(E))$$
• Responsible for dephasing of electrons
$$Re[\Sigma^{R}(E)] = \frac{i}{\pi} \mathcal{P} \int dE' \frac{Im[\Sigma^{R}(E')]}{E - E'}$$
Responsible for shifting resonance energies
In the form of Kramers-Kronig relations/Hilbert transform
$$H(u)(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{u(\tau)}{t - \tau} d\tau$$

Hilbert transform in mode space is faster: < 1% of operations

.

D. A. Lemus, J. Charles, and T. Kubis, "Mode-space-compatible inelastic scattering in atomistic nonequilibrium Green's function implementations," J. Comput. Electron., no. 19, 1389–1398, 2020.

Simulation example

- InAs tunnel FET
- Atomistic tight binding
- Acoustic phonon scattering, optical phonon scattering, polar-optical phonon scattering
- Three cases:
 - Ballistic only
 - Scattering, zero real Σ^R
 - Scattering Σ^R from Kramers-Kronig relation
- All in mode space

D. A. Lemus, J. Charles, and T. Kubis, "Mode-space-compatible inelastic scattering in atomistic nonequilibrium Green's function implementations," J. Comput. Electron., no. 19, 1389–1398, 2020.

InAs TFET: 2.4nm x 2.4nm

D. A. Lemus, J. Charles, and T. Kubis, "Mode-space-compatible inelastic scattering in atomistic nonequilibrium Green's function implementations," J. Comput. Electron., no. 19, 1389–1398, 2020.

InAs TFET: 3.6nm x 3.6nm

D. A. Lemus, J. Charles, and T. Kubis, "Mode-space-compatible inelastic scattering in atomistic nonequilibrium Green's function implementations," J. Comput. Electron., no. 19, 1389–1398, 2020.

InAs TFET: 3.6nm x 3.6nm with 10x scattering

D. A. Lemus, J. Charles, and T. Kubis, "Mode-space-compatible inelastic scattering in atomistic nonequilibrium Green's function implementations," J. Comput. Electron., no. 19, 1389–1398, 2020.

Reason for shift in current

Previous NEMO5 results, shown in IWCN 2019

Previous results did not include mode space, but current results do

Exact solution of Σ^R , in mode space, available in NEMO5

P. Sarangapani, et al., "Band-tail Formation and Band-gap Narrowing Driven by Polar Optical Phonons and Charged Impurities in Atomically Resolved III-V Semiconductors and Nanodevices," Phys. Appl., vol. 12, no. 4, p. 1, 2019. 10

Where to find our software

SILVACO

