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Lecture 4

Dirac and topological materials



More recently, physicists have gone beyond the paradigm of
broken symmetries to find new states of matter with
non-trivial topology




In 1982,Von Klitzing discovered that the Hall
conductivity in bad metals is exactly quantized in 2D
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Subsequent measurements confirmed the quantization in steps of e?/h
with an accuracy of 10- !

Why is the quantization so good!?



In galilean invariant systems (non-relativistic), the energy of a particle is
proportional to the square of the momentum
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In the ground state, a single free electron
is at rest (k=0)
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In galilean invariant systems (non-relativistic), the energy of a particle is
proportional to the square of the momentum
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Because of Pauli principle, two electrons cannot occupy the
same quantum state.

If one adds many free electrons, the states below the Fermi
level are occupied and the ones above it are empty.



In solids (periodic potential), the energy spectrum of electrons
can be quite complicated

Fermi Energy (EF)

If the Fermi level crosses the electronic bands, the highest
occupied state can be easily excited by a bias voltage (metallic state)
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hole



In solids (periodic potential), the energy spectrum of electrons
can be quite complicated

Band Gap

1 / Er

% W If the Fermi energy lives inside the

5 | “ band gap, the electrons cannot be easily

- excited with a bias voltage
(insulating behavior)




Band Structure: Conductors and Insulators
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There is a new class of materials that does not fit in this
classification: topological materials!



Topology is a field of mathematics concerned with properties that
remain invariant under continuous deformations
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Topological index and invariants
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Gaussian curvature
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radius of curvature

Topological invariant



Gaussian curvature (sphere)
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Topological invariant



Hairy ball theorem

You can’t comb a hairy ball without
creating a cowlick.

Every zero of the tangential vector field has an index. The sum of the
indexes is equal to the Euler topological number

X =2(1-g)=2

Therefore a sphere has a least one zero!



Hairy ball theorem

You can’t comb a hairy ball without
creating a cowlick.

Every zero of the tangential vector field has an index. The sum of the
indexes is equal to the Euler topological number.

x=2(1-g9)

One can comb a torus without any
zeros in it.

x=2(1-g)=
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The de Broglie wavelength of the electrons must be larger than the

lattice constant of the crystal.

In a square lattice in 2D, the momentum
of the electrons is bounded inside a
square of size |/(lattice constant)!

2




In crystals, the wavefunctions of the electrons are periodic.

The momentum space of a periodic
crystal (Brillouin zone) is homeomorphic to a torus
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Bloch bands @ T (v)
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Bloch wavefunctions describe the wavefunction of
the electrons in a periodic crystal.




Bloch bands @ t (v)
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The Berry connection of the Bloch band kets, Z<¢nk! Wn k)

behaves as a vector field in the Brillouin zone (torus).

Loopholes or hedgehogs of the vector field have a
topological index and add up to a non-zero
Euler topological number in the hairy torus.
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Chern number (integer)

The Chern number is a topological invariant of Bloch bands
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Y = b // KdS Cowlicks in the Berry curvature change the
2T topological class of the hairy torus

(Brillouin zone)!
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Why is the Hall conductivity quantized?
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VoLUME 49, NUMBER 6 PHYSICAL REVIEW LETTERS 9 AucusT 1982

Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto,'*’ M. P. Nightingale, and M. den Nijs

Depavtment of Physics, University of Washington, Seattle, Washington 98195
(Received 30 April 1982)

The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential i/, The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U /4w, .

two-dimensional electron gas
with Hall bar geometry

Quantum hall conductivity is quantized by the Chern number!



Topological matter

In 2D, electrons move in cyclotron orbits in the presence
of a magnetic field
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Due to quantum interference, only a discrete number of
wavelengths are allowed (Landau energy levels)



Integer quantum Hall effect

0 2 4 6 8 16 12 14
35 — T = T T T T T T T T T
[ 1.0
Pax 30t | Py
kC¥sq 25[ I 3 108 he?
IO rxr — 15k

2 2
O-Ql'a? _|_ O-:By ] “w 104
10 f |

' " 102
0.5 ,
00 i 1 " L | 1 " L OD
0 2 4 6 8 10 12 14
Magnetic Field (T)




Quantum Hall conductivity is quantized by the Chern number
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Topologically distinct insulating phases



Bulk-Boundary Correspondence

electrons can move along edge (conducting)

electrons localized in orbits (insulating)
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Hall conductivity is quantized by the number of
| D channels at the edge!
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Lesson |: Some concepts appear to be pure mathematical abstractions
until they lead the way to understanding new fundamental discoveries.

Try to learn the language, even if you would like to become an
experimentalist!

cyhnder
_bh- 2¢h

rectmg \gr prism
-

,”" \:\

'8y '\

A ' ‘\ \\

[N ('

“\ “‘

‘u‘\ /"

SN =
O
-




There are other classes of materials that also have unusual topological
properties in the absence of a magnetic field.
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In 1928, Paul Dirac proposed a relativistic wave equation
for spin |/2 particles, such as electrons and quarks.




In 1928, Paul Dirac proposed a relativistic wave equation
for spin |/2 particles, such as electrons and quarks.

In the massless case, fermions follow a Dirac
equation with chiral states

HVY L =wv O pm_?/py \IJ:::/UE'qu:

momentum operator



Dirac materials

Nodal superconductors

Strange metal

Temperature

Pseudogap

Antiferromagnet

Metal

Y

Doping (holes per copper ion)
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There is a variety of materials that have Dirac fermions as elementary
electronic excitations.



Dirac fermion physics

“Slow fermions’ that behave as Massless neutrinos
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The crossings in nodal points manifest themselves through band
invariants!

Berry phase: v = %z(@\vk\\m -dk

A
™~ Berry connection

The Berry phase of a nodal crossing with energy spectrum E(k) = +£k",
nes is y=nm.
(b) P ~
/TN




Dirac materials

Backscattering is topologically
forbidden

Binding energy (eV)

Bulk valence
band (BVB)
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Dirac point is protected

by time reversal symmetry!
(Kramers theorem) Helical in spin




The crossings in nodal points manifest themselves through band
invariants!

Berry phase: v = %z(@\vk\\m -dk
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The Berry phase of a nodal crossing with energy spectrum E(k) = +£k",
nes is y=nm.
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The crossings in nodal points manifest themselves through band

invariants!
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Berry phase:

™~ Berry connection
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Chern number: ) — // dS - Vi X i(¥U|V|P)
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The Berry curvature is the analog
of a magnetic field.

In 3D, the Chern number is the
analog of the flux produced by a
magnetic monopole!
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In 3D materials, those “magnetic monopoles” are connected to each other
by Dirac strings!




All topological materials are insulators in bulk and
metallic at the surface!

electrons can move along edge (conducting)

Insulator n=0 electrons localized in orbits (insulating)
(a)
Quantum Hall

State n=1




Nano science

Novel materials can be tailored at mesoscopic
sizes for new purposes!



Graphene




The thinnest material in the universe

Few-layer
Graphene
| atom thick sheet of graphite!
Gold electrode
10 um
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666 22 OCTOBER 2004 VOL 306 SCIENCE

Electric Field Effect in Atomically
Thin Carbon Films

K. S. Novoselov,' A. K. Geim,'* S. V. Morozov,? D. jiang,1
Y. Zhang,' S. V. Dubonos,? I. V. Grigorieva," A. A. Firsov®

We describe monocrystalline graphitic films, which are a few atoms thick but are
nonetheless stable under ambient conditions, metallic, and of remarkably high

Pealing graphite with
adhesive tape!
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The Nobel Prize in Physics 2010

Andre Geim, Konstantin Novoselov

Andre Geim
University of Manchester, UK

and

Konstantin Novoselov
University of Manchester, UK

“for groundbreaking experiments regarding the two-dimensional material graphene”




Eur. J. Phys. 18 (1997) 307-313. Printed in the UK Pll: S0143-0807(97)84689-2

Of flying frogs and levitrons

M V Berryt and A K Geimi

Figure 4(b). Frog levitated in the stable region.



Eur. J. Phys. 18 (1997) 307-313. Printed in the UK Pll: S0143-0807(97)84689-2

Of flying frogs and levitrons

M V Berryt and A K Geimj

2000 IgNobel prize in physics
For achievements that first make people laugh and then
make people think
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Figure 4(b). Frog levitated in the stable region. |



Square lattice

Particle-wave duality



Honeycomb lattice
(chicken wire)



Massless Dirac fermions!



Very high electronic mobility at room temperature

100-GHz Transistors from
Wafer-Scale Epitaxial Graphene

Y.-M. Lin,* C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu,
A. Grill, Ph. Avouris*
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Ultra-fast transistors!

662 5 FEBRUARY 2010 VOL 327 SCIENCE

gate

dielectric

source
drain

graphene




Periodic table

Time

12.011 Carbon based
14 transistors!’

Si
28.085
32

Ge

72.63 Silicon industry
o0

Sn

118.71
82
Pb

207.2

Ge transistor
(1947)




1308 6 JUNE 2008 VOL 320 SCIENCE

Fine Structure Constant Defines Very transparent
Visual Transparency of Graphene

R. R. Nair,* P. Blake,* A. N. Grigorenko,* K. S. Novoselov,* T. J. Booth,* T. Stauber,”
N. M. R. Peres,” A. K. Geim'*
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The strongest known material

Effective Young's Modulus (TPa)
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C. Lee et al., Science 321, 325 (2008)

|00 times stronger than the strongest steel!



Highly flexible

J. S. Bunch et al., Nano Lett. 8, 2458 (2008)




Flexible electronics

-
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And much more...



