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Lecture 3

Conservation laws and broken symmetries



In nature, there is a set of physical quantities that are exactly 
conserved in every isolated system. 



Symmetries in nature



Noether’s theorem

In 1915, Emmy Noether realized that every continuous 
symmetry corresponds to a conservation law.



Noether’s theorem

Conservation of charge 

Continuity equation 

In 1915, Emmy Noether realized that every continuous 
symmetry corresponds to a conservation law.
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Noether’s theorem

Translational symmetry
Conservation of momentum  

In 1915, Emmy Noether realized that every continuous 
symmetry corresponds to a conservation law.
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Noether’s theorem

Rotational symmetry
Conservation of angular

momentum   

In 1915, Emmy Noether realized that every continuous 
symmetry corresponds to a conservation law.E = [r�(x)]2 + r0�

2(x) + u�4(x) +O(�6)
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Noether’s theorem

Time reversal symmetry

Conservation of energy 

In 1915, Emmy Noether realized that every continuous 
symmetry corresponds to a conservation law.
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Noether’s theorem

Conservation of probability 

Continuity equation 

In 1915, Emmy Noether realized that every continuous 
symmetry corresponds to a conservation law.
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Noether’s theorem

Conservation of color charge
SU(3) gauge fields (gluons) 

In 1915, Emmy Noether realized that every continuous 
symmetry corresponds to a conservation law.



 Other conservation laws are dynamically 
generated in nature.



In nature, the universe of possible dynamic configurations of an isolated 
system can be mapped into semiclassical orbits inside the phase space. 

Phase space



In a isolated systems, orbits can be 
either open or closed, regular or 

chaotic.

A 1D harmonic oscillator has two classical turning points and hence closed 
periodic orbits in the phase space velocity vs position (y)



Gravitating objects with open orbits have a single classical turning 
point and explore an infinite phase space. 



Complex isolated systems that explore a finite phase space must 
conserve time averages of certain observables

Closed periodic orbit Open chaotic orbit



Complex isolated systems that explore a finite phase space must  
conserve time averages of certain observables

Closed periodic orbit Open chaotic orbit



Complex isolated systems that explore a finite phase space must  
conserve time averages of certain observables

Even open chaotic orbits can be confined into a finite phase space.  



Virial theorem

If an isolated system with orbits confined to a finite phase space 
has a potential energy that is a homogeneous function of degree N, namely

then the time average of the Kinetic energy is related to the time 
average of the potential energy by

I
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In 1933, Fritz Zwicky studied the velocity of 
galaxies in the Coma cluster and estimated the 

mass based on the luminosity and number 
of galaxies inside the cluster.     

A galaxy cluster can be thought of an an isolated system bound by 
internal gravitational forces. The phase space explored by the galaxies 

inside the cluster is finite.



Virial theorem

By measuring a lower bound of the relative velocities of galaxies 
inside clusters, one can calculate a lower bound of their masses 

through the Virial theorem,

The currently observed masses (visible) are a lot smaller than the lower 
bound set by the Virial theorem. That implies in the existence of dark matter! 
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The validity of the Virial theorem and the existence of dark matter 
have been confirmed through gravitational lensing measurements, 
that can detect the total mass of galaxy clusters (visible and dark).

The physical nature and origin of dark matter remains 
an outstanding open puzzle! 



There is another reason why we care about symmetry.



Broken symmetries can tell us a lot about the underlaying physics.

There is another reason why we care about symmetry.



Spontaneously broken symmetriesE = [r�(x)]2 + r0�
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The ground state of a quantum ferromagnet is degenerate under rotation,
reflecting the symmetry of the Hamiltonian 

Spin on site i



Spontaneously broken symmetriesE = [r�(x)]2 + r0�
2(x) + u�4(x) +O(�6)
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Heisenberg spin exchange 
Hamiltonian

Spin on site i

But once the system orders, the ground state chooses an arbitrary 
orientation, spontaneously lowering the original symmetry 

of the Hamiltonian. 



Goldstone theorem

In 1961, J. Goldstone showed that the spontaneous 
breaking of any continuous symmetry is associated 
with a massless and spinless particle known as the 

Nambu-Goldstone boson. 



Goldstone theorem

In 1961, J. Goldstone showed that the spontaneous 
breaking of any continuous symmetry is associated 
with a massless and spinless particle known as the 

Nambu-Goldstone boson. 

The ordered spins in a ferromagnet break 
rotational symmetry.



Goldstone theorem

In 1961, J. Goldstone showed that the spontaneous 
breaking of any continuous symmetry is associated 
with a massless and spinless particle known as the 

Nambu-Goldstone boson. 

The elementary excitations of a quantum 
ferromagnet are spin waves (magnons)!



Goldstone theorem

In 1961, J. Goldstone showed that the spontaneous 
breaking of any continuous symmetry is associated 
with a massless and spinless particle known as the 

Nambu-Goldstone boson. 

A crystal of atoms breaks translational 
symmetry of space.



Goldstone theorem

In 1961, J. Goldstone showed that the spontaneous 
breaking of any continuous symmetry is associated 
with a massless and spinless particle known as the 

Nambu-Goldstone boson. 

The Goldstone mode of a crystal are
lattice vibrations (phonons)!



Order parameter

In 1937, L. Landau defined the concept of the order parameter,  
which is the expectation value of an observable.

It is non-zero only in the ordered phase.  



Order parameter

In 1937, L. Landau defined the concept of the order parameter,  
which is the expectation value of an observable.

It is non-zero only in the ordered phase.  

In the case of a magnet, the order parameter is a vector
set by the local statistical average of the spin, 
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Order parameter
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Ordered 
phase

The order parameter is zero at the phase transition

T>Tc T<Tc

Ordered

In 1937, L. Landau defined the concept of the order parameter,  
which is the expectation value of an observable.

It is non-zero only in the ordered phase.  



Order parameter

Liquid crystals are soft systems that have some translational symmetry, 
but are neither solids nor liquids. 



Order parameter

Liquid crystals can have orientational order (nematic) or translational 
order (smetic). The order parameter is a tensor defined by the

average orientation of alignment of the molecules.

Nematic phase Smetic phase



Order parameter

Superfluids have a macroscopic occupation 
of bosons in the ground energy level. 

The order parameter for superfluids is a 
complex number proportional to the 

macroscopic density of the condensate,
 

 (x) 2 C.

1

Above the critical temperature, the density of particles in the ground 
level is zero in the thermodynamic limit. 



Order parameter

Order parameters with a periodic spacial profile are called 
density waves. When the period of modulation is infinite, the 

ordered phase is uniform.



Phase transition

Landau proposed to expand the energy in powers of the
order parameter near the phase transition. 

One should keep all possible terms that respect the 
symmetry of the order parameter   
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Phase transition

Landau proposed to expand the energy in powers of the
order parameter near the phase transition. 
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The external field    is defined as whatever couples 
with the order parameter in linear response 

(external magnetic field for spins, etc...) 
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Phase transition

Landau proposed to expand the energy in powers of the
order parameter near the phase transition. 

At zero external field, the energy is preserved when 
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since it does not cost any energy to rotate all the spins at the same time, 
so the coefficients of all odd terms are zero by symmetry!
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Order parameter

for the broken symmetry state 
to be a stable minimum! 
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Order parameter

Broken symmetry state!              

Minimum of energy

E = �h�+ r0�
2 + s�3 + u�4 +O(�5)

� = �@E

@h

� ! ��

h

E = r0�
2 + u�4 +O(�6)

@E

@�
= �(2r0 + 4u�2) = 0

1

or

E = �h�+ r0�
2 + s�3 + u�4 +O(�5)

� = �@E

@h

� ! ��

h

E = r0�
2 + u�4 +O(�6)

@E

@�
= �(2r0 + 4u�2) = 0

�2 = 0, or �2 = � r0
2u

E

�

1

E = �h�+ r0�
2 + s�3 + u�4 +O(�5)

� = �@E

@h

� ! ��

h

E = r0�
2 + u�4 +O(�6)

@E

@�
= �(2r0 + 4u�2) = 0

�2 = 0, or �2 = � r0
2u

E

�

1

r0 > 0

r0 = 0

r0 < 0

1

r0 > 0

r0 = 0

r0 < 0

1

r0 > 0

r0 = 0

r0 < 0

1

r0 > 0

r0 = 0

r0 < 0

� = ±
r
� r0
2u

� = 0

> 0

r0 / (T � Tc)

1

r0 > 0

r0 = 0

r0 < 0

� = ±
r
� r0
2u

� = 0

> 0

r0 / (T � Tc)

1

E(�) = �h�+ r0�
2 + s�3 + u�4 +O(�5)

E(�) = r0�
2 + u�4 +O(�6)

1

E(�) = �h�+ r0�
2 + s�3 + u�4 +O(�5)

E(�) = r0�
2 + u�4 +O(�6)

0

1

E(�) = �h�+ r0�
2 + s�3 + u�4 +O(�5)

E(�) = r0�
2 + u�4 +O(�6)

0

1



Order parameter

changes sign at the phase transition!
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FIG. 2: (a) Disordered states that do not break the symmetry. (b) Ordered states that

spontaneously break the symmetry. The energy function "g(�) has a symmetry � ! ��:

"g(�) = "g(��). However, as we change the parameter g, the minimal energy state (the ground

state) may respect the symmetry (a), or may not respect the symmetry (b). This is the essence

of spontaneous symmetry breaking.

superfluid is described by a U(1) symmetry breaking.

It is interesting to compare a finite-temperature phase, liquid, with a zero-temperature phase, su-

perfluid. A liquid is described a random probability distributions of particles (such as atoms), while

a superfluid is described by a quantum wave function which is the superposition of a set of random

particle configurations:

|�
superfluid

i =
X

random configurations

�����

+
(1)

The superposition of many di↵erent particle positions are called quantum fluctuations in particle posi-

tions.

Since Landau symmetry-breaking theory suggests that all quantum phases are described by symmetry

breaking, thus we can use group theory to classify all those symmetry breaking phases: All symmetry

breaking quantum phases are classified by a pair of mathematical objects (GH , G�), where GH is the

symmetry group of the Hamiltonian and G� is the symmetry group of the ground state. For example, a

boson superfluid is labeled by (U(1), {1}), where U(1) is the symmetry group of the boson Hamiltonian

which conserve the boson number, and {1} is the trivial group that contains only identity.
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The ordered state also breaks a continuous rotational symmetry and 
picks one arbitrary direction in space. The low energy excitations along 

the minimum of the Mexican hat potential are Nambu-Goldstone 
modes (spin waves).

Goldstone theorem



This concept can be applied to a variety of phase transitions
in completely unrelated systems



In superconductors, the order parameter is the 
local statistical average of Cooper pairs,
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Unlike the conventional density of electrons 

Superconductivity breaks the gauge symmetry of the phase
in the single particle wave function
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Goldstone theorem

The gauge symmetry in the phase of the 
wavefunction is spontaneously

broken in the superconducting state

The spontaneous breaking of any continuous symmetry 
is associated with a massless and spinless particle 

known as the Nambu-Goldstone boson. 
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What is the Goldstone mode?



Goldstone theorem

The gauge symmetry in the phase of the 
wavefunction is spontaneously

broken in the superconducting state

The spontaneous breaking of any continuous symmetry 
is associated with a massless and spinless particle 

known as the Nambu-Goldstone boson. 
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It is the phase      itself! (gauge field)

E = [r�(x)]2 + r0�
2(x) + u�4(x) +O(�6)

hSi 6= 0

H = J
X

ij

Si · Sj

@⇢

@t
+r · J = 0

dp
dt

= 0

dL
dt

= 0

dE
dt

= 0

~�(x) = hS(x)i
�

r0 = r(Tc � T )

@E

@�
= 0

�2 = � r0
2u

�(x) = h †(x) †(x)i
⇢ = h †(x) (x)i
 (x) !  (x)ei'

2'

�(x) ! �(x)e�i2'

1



(a) (b) (b)(a)

A A A

BB’
φ φ φ

g gc g’ε ε ε

(a) (b)

FIG. 2: (a) Disordered states that do not break the symmetry. (b) Ordered states that

spontaneously break the symmetry. The energy function "g(�) has a symmetry � ! ��:

"g(�) = "g(��). However, as we change the parameter g, the minimal energy state (the ground

state) may respect the symmetry (a), or may not respect the symmetry (b). This is the essence

of spontaneous symmetry breaking.

superfluid is described by a U(1) symmetry breaking.

It is interesting to compare a finite-temperature phase, liquid, with a zero-temperature phase, su-

perfluid. A liquid is described a random probability distributions of particles (such as atoms), while

a superfluid is described by a quantum wave function which is the superposition of a set of random

particle configurations:

|�
superfluid

i =
X

random configurations

�����

+
(1)

The superposition of many di↵erent particle positions are called quantum fluctuations in particle posi-

tions.

Since Landau symmetry-breaking theory suggests that all quantum phases are described by symmetry

breaking, thus we can use group theory to classify all those symmetry breaking phases: All symmetry

breaking quantum phases are classified by a pair of mathematical objects (GH , G�), where GH is the

symmetry group of the Hamiltonian and G� is the symmetry group of the ground state. For example, a

boson superfluid is labeled by (U(1), {1}), where U(1) is the symmetry group of the boson Hamiltonian

which conserve the boson number, and {1} is the trivial group that contains only identity.

4

Fluctuations of the superconductor order parameter 

The Goldstone mode is a phase fluctuation of the order parameter. 
The Higgs mode is a density fluctuation in the ordered state.



The Anderson-Higgs mechanism

In 1962, Anderson showed that the coupling of the 
density fluctuations of a superconductor (Higgs mode) 

with electromagnetic fields makes photons massive.
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In a superconductor

Photons decay inside a superconductor!



Maxwell’s equations  
(uniform B field)
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The Anderson-Higgs mechanism
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In a superconductor
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The Anderson-Higgs mechanism
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Diamagnetic current!

Meissner effect



This phenomenon is similar to the Higgs boson mechanism 
 that creates mass for other particles in the standard model!



Lesson: Sometimes a physical concept can have applications 
in different fields! Never stop trying to make connections 

between fields, even if they seem totally unrelated.



There are many open puzzles in the universe!

Dark energy?

The observed acceleration in the expansion of the universe has 
been tentatively explained in terms of the existence of an 

undetected form of energy which permeates the whole universe. 


