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Algorithmic Scaling

Run an algorithm with exponential quantum speedup (e.g., guantum simulation) on quantum hardware

So far never observed
on guantum hardware
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Algorithmic Scaling

Run an algorithm with exponential quantum speedup (e.g., guantum simulation) on quantum hardware

Time-to-solution [arb. units] 2>
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Algorithmic Scaling

Run an algorithm with exponential quantum speedup (e.g., quantum simulation) on quantum hardware
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Algorithmic Scaling

Run an algorithm with exponential quantum speedup (e.g., quantum simulation) on quantum hardware
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Algorithmic Scaling

Run an algorithm with exponential quantum speedup (e.g., quantum simulation) on quantum hardware
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[ Trying for speedup: D-Wave 2000Q vs simulated annealing

Problem: find the ground

state of a certain family of

hard spin-glass instances
of N < 2048 spins




[ Trying for speedup: D-Wave 2000Q scaling advantage against simulated annealing 1

Problem: find the ground
state of a certain family of

. . . Simulated Annealing (SA) with single-spin updates
ard spin-glass instances :
of N < 2048 spins D-Wave 2000Q unequivocally beats SA
10°, ‘
" ¢ DW2KQ l _
| §sA B Fit curves to
107 T bL
T s | aexp(bL)
S -
T * Solver b [95% CI]
e T e .- |DW2KQ 0.760 £ 0.017 |
\/103 /,-.”/r A SA 1-002 :I: 0.066
S
10! ‘ ‘ ‘ |
V1152 /1352 /1568 /1800 /2048
(sqrt no. of spins/qubits) scaling of the median of the instance distribution

First example of an experimental quantum scaling advantage on a
non-trivial problem relative to a generic classical algorithm T. Albash, DL, Phys. Rev. X 8, 031016 (2018)




[ D-Wave 2000Q scaling disadvantage against better classical heuristic algorithms }

;;ct): Lirgzgg]r?atizia?rmﬁngf Simulated Annealing (SA) with single-spin updates
hard spin-glass instances D-Wave 2000Q unequivocally beats SA
of N < 2048 spins Classical Spin Vector Monte Carlo (SVMC) beats both
. Classical simulated quantum annealing (SQA) beats all
10° ‘
| § DW2KQ |
% SA Fit curves to
107 L SVMC ~ ‘;¢,’=:’
~ lEsea | S e e aexp(bL)
= -7 « TS AP L e
e Solver b [95% CI]
E e e " DW2KQ 0.760 & 0.017
\/103 .”,-O”’r ] SA 1.002 :|:0.066
/,,/’/ SVMC 0.500 £ 0.029
Lot - SQA 0.370 £ 0.052
V1152 /1352 /1568 /1800 /2048
(sqrt no. of spins/qubits) scaling of the median of the instance distribution

T. Albash, DL, Phys. Rev. X 8, 031016 (2018)



Why no speedup?

D-Wave quantum annealers are NISQ-era devices
Current NISQ-era devices are indeed Noisy

& IBMQX5 (164])

fidelity under
free evolution
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total time in units of single qubit gate time (90 ns)

B. Pokharel, N. Anand, B. Fortman, DL, Phys. Rev. Lett. 121, 220502 (2018)



Why no speedup?

D-Wave quantum annealers are NISQ-era devices
Current NISQ-era devices are indeed noisy

But improvements are possible via error suppression methods

IBMQX5 (16q)

single-qubit fidelity

under dynamical

decoupling

N breakeven point

single-qubit
fidelity under
free evolution

0 100 200 300 400 500

total time in units of single qubit gate time (90 ns)

B. Pokharel, N. Anand, B. Fortman, DL, Phys. Rev. Lett. 121, 220502 (2018)

how well can we do with
error correction?



[Enter Quantum Error Correction (QEC)}

Run an algorithm with exponential quantum speedup (e.g., guantum simulation) on quantum hardware

with decoherence + QEC



[ Algorithmic Success with QEC }

Run an algorithm with exponential quantum speedup (e.g., guantum simulation) on quantum hardware

with decoherence + QEC
quantum scaling
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Algorithmic success with QEC:| corrected quantum scaling is better than both uncorrected quantum & classical




[ Algorithmic Breakeven with QEC }

Run an algorithm with exponential quantum speedup (e.g., quantum simulation) on quantum hardware

with decoherence + QEC
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Can this be
achieved with
existing quantum
hardware?

More modest:
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Algorithmic breakeven with QEC: | corrected quantum scaling is better than uncorrected quantum,
but not necessarily better than classical




Algorithmic breakeven with quantum annealing




[ Brief intro to D-Wave processors

4 generations so far:

They are programmable quantum annealers;
Designed to solve optimization problems D-Wave 1:
formulated as Ising spin-glass Hamiltonians: y N=128 (USC)

Given the Hamiltonian

— \'N Z Z _Z i} .

HIsing - Zi=1 hiai + Zi<j]ij0i i D-Wave 2:
. . . . . . N=512 (USC, NASA)
Find the minimizing spin configuration {o;" = +1}

Solve by adiabatically evolving the transverse field Ising D-Wave 2X:
Hamiltonian N=1152 (USC, NASA, LANL) March 2016

H(t) — A(t) Z?’=1 O-ix + B(t)Hlsing
Qrom ground state of ZIiV:1 g to ground state of Hlsing/

D-Wave 2000Q 2 A
N=2048 (NASA, LANL) sep 2017



[ Brief intro to D-Wave processors }

KUse superconducting Nb flux qubits, each coup@
to up to 6 other qubits (“Chimera graph”)

- Ty, T, ~ 10 — 100ns, annealing time tF = 1us

Chimera graph:

- minimum gap(H) canbe K T ~ 10mK How square grid of L x L unit cells
~ quantum? number of qubits N = 8L2
“somewhat”

- “Stoquastic”: efficient classical simulation possible

\in many cases using Quantum Monte Carlo /

A testbed for
algorithmic scaling with noisy qubits
and error correction
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[ Algorithmic breakeven with quantum annealing

510" — w w x
Problem: 2 : .
) S [ | = 25 percentile
find ground state energy of > 50 percentile
| | =15 percentile
z __Z éﬁ | | =90 percentile ) _
HISlng — Jij 0;0, = ——— 95 percentile without error correction
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, =
with random =
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no. of physical qubits
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Run on a D-Wave 2
(503 qubits)

K. Pudenz, T. Albash, DL, Nature Comm. 5, 3243 (2014); PRA 91, 042302 (2015)



[ Algorithmic breakeven with quantum annealing v

Problem:
find ground state energy of

S Z _Z
Higing = E Jijo; o

with random

1 5
Ji; € {i—,--- ,i—,il}

6 6

Run on a D-Wave 2
(503 qubits)

[

— 25 percentile
= = 25 percentile

50 percentile

50 percentile
- 75 percentile
= = 75 percentile
= 90 percentile
= = 90 percentile
——— 05 percentile
— = 95 percentile

[
-)
[E—

without error correction

with error correction |

[no claim of q. speedup!]

time to solution (number of annealing cycles)

[
-
)

V66 /N V86 V112

no. of physical (unc.) or logical (cor.) qubits

K. Pudenz, T. Albash, DL, Nature Comm. 5, 3243 (2014); PRA 91, 042302 (2015)

Quantum
Annealing
Correction

QAC works by:

- introducing energy penalty
against excitations

- majority-vote decoding of
logical qubits



Up the ante: analog control errors

Ideally, a quantum annealer evolves adiabatically accordingto H(t) = A(t)Hy + B(t)Hp

| Hy=H

| o

transverse o Z G programmab|e
]eV

Ising 2 + 26

(i,])eE

D-Wave 2X chip intrinsic analog errors:

6h 6]

hmax ]max

In reality: analog errors = J-chaos
H implemented # H intended

+ z 5hj0'iz + z 5]ijO'iZO'jZ
J ij

6hi, 0Ji; ~ N(0,n)

~ N(0,0.03)

Let’s add artificial Gaussian noise 6/;; ~ N(0, N +717) on top of intrinsic analog errors: 7;,,;=0.03
n €{0.03, 0.05, 0.07, 0.10, 0.15}



[ Time-to-solution as a function of problem size and noise

Time-to-solution (# of repetitions R at t; = 5us) for median instances

without error correction
10° B [ \ \ \ BE

| —*—n=0.00
10° |

number of runs -
required to find 10° |
the ground state :

10" |

100 ; - i | |
2 4 6 8 10 12

[N = 8L2] N = 1152

2X

=

run on USC’s DW

A. Pearson, A. Mishra, DL, I. Hen, arXiv:1907.12678



[ Time-to-solution as a function of problem size and noise }

Time-to-solution (# of repetitions R at t; = 5us) for median instances

without error correction with error correction Quantum
6 — \ \ \ \ — 10°% — \ \ \ \ E Anneallng
=0 ] Correction
- 10° | —©n=0.03 ,
3 | —8-n=20.05
| —4-n=0.07
- n =0.10
T | —©—n=0.15
p- 10° |

number of runs
required to find
the ground state

- 10% ¢

100 -5

[N = 8L2]

USC’s DW2X

scaling with Quantum Annealing Correction is better than without
but how good is this scaling?

perform data collapse,
extract finite-size scaling

A. Pearson, A. Mishra, DL, I. Hen, arXiv:1907.12678




Time-to-solution data collapse & finite-size scaling:
fit to R = ea(n®+b?) L

x10%

2+ 0.03
0.05
i 0.07
18- & o.10
L 0.15

| without error correction

run on . . . .
NASA's b=0.16 worse than classical deterministic upper bound
DW2000Q ¢ = 2.04 R ~ exp(&L2)]

A. Pearson, A. Mishra, DL, I. Hen, arXiv:1907.12678



Time-to-solution data collapse & finite-size scaling:
fit to R = ea(n®+b?) L

2T i Tl g e
i 0.07 T o010
1.8 - % 812 100 L A 0.5
. without error correction with error correction

80 -
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log(R)/(n* + b*)°
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) 1 1 |
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L

a=0.74

NASA'S b =0.16 bff;i;g‘;” b=006  allsmaller
DW2000Q c = 2.04 h k c = 0.44
d=2.15 UPPETBOUNG ™~ _ 4 74 error correction

(lower bound n _
A. Pearson, A. Mishra, DL, I. Hen, arXiv:1907.12678 unknown) restores ope ")




Beyond D-Wave: The IARPA Quantum Annealing Consortium 1

IARPA Quantum Enhanced Optimization (QEQ) Program 140

Goal: find out the ultimate capabilities of quantum annealing. Is s |}
there a quantum speedup?

e’ —— Fitted data, T,=4.64 s
: *  Raw dafa
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Building a 100-qubit quantum annealer using Aigh-coherence (Al) ' |
.‘;illiflimi Wty iy

superconducting flux qubits, for quantum optimization and
sampling applications. Built-in error suppression and correction.
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~ S. Novikov et al., arXiv:1809.04485



[ Quantum Algorithmic Breakeven 1

Intermediate goal for QC, similar in spirit to “quantum supremacy”:

Demonstrate error-corrected scaling that is better than uncorrected
on a non-trivial computational problem

Already achievable in quantum
annealing

An invitation for gate-model
guantum computation

time to solution

5 20 40 60 80 100 Tha n JI S !J)
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