

Reproducible Science @ nanoHUB.org

Reproducing simulations in

High efficiency rare-earth emitter for thermophotovoltaic applications

Enas S. Sakr, Zhiguang Zhou, and Peter Bermel Applied Physics Letters 105, 111107 (2014)

pbermel@purdue.edu

The paper

APPLIED PHYSICS LETTERS 105, 111107 (2014)

High efficiency rare-earth emitter for thermophotovoltaic applications

E. S. Sakr, Z. Zhou, and P. Bermel^{a)}

Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, 1205 W. State St., West Lafayette, Indiana 47907, USA

(Received 30 July 2014; accepted 4 September 2014; published online 16 September 2014)

In this work, we propose a rare-earth-based ceramic thermal emitter design that can boost thermophotovoltaic (TPV) efficiencies significantly without cold-side filters at a temperature of $1573 \text{ K} (1300 \,^{\circ}\text{C})$. The proposed emitter enhances a naturally occurring rare earth transition using quality-factor matching, with a quarter-wave stack as a highly reflective back mirror, while suppressing parasitic losses via exponential chirping of a multilayer reflector transmitting only at short wavelengths. This allows the emissivity to approach the blackbody limit for wavelengths overlapping with the absorption peak of the rare-earth material, while effectively reducing the losses associated with undesirable long-wavelength emission. We obtain TPV efficiencies of 34% using this layered design, which only requires modest index contrast, making it particularly amenable to fabrication via a wide variety of techniques, including sputtering, spin-coating, and plasma-enhanced chemical vapor deposition. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895932]

Key results

Studied spectral emissivity and TPV efficiency for a multilayer rare-earth doped ceramic emitter, such as Erbium Aluminum Garnet (ErAG):

- Effect of adding dielectric mirror as a back reflector instead of refractory metals to reduce parasitic losses.
- Effect of using integrated chirped filter on top to reduce sub-bandgap parasitic losses

TABLE I. TPV efficiency for different ErAG emitter designs. Although all designs display overall efficiencies higher than seen for metal substrates, the best overall performance comes from the chirped filter + shifted rugate filter at 33.89%.

ErAG emitter	d (μ m)	η (%) at 1323 K	η (%) at 1573 K	$\eta_{\rm rad}$ (%) at 1573 K	ē (%) at 1573 K	Top/bottom layers
AR + rugate filter	125	12.6	19.18	41.4	5.09	1/1
AR + rugate filter	250	12.05	18.63	37	9.26	1/1
Q-matched + rugate filter	125	17	24.32	51.4	6.12	3/21
Q-matched + rugate filter	250	15.34	22.58	44.53	10.44	3/21
Chirped filter + shifted rugate filter	250	25.55	33.89	70.85	6.11	Chirped 26/21
Chirped filter only	250	25.46	32.94	70.85	6.11	Chirped 26/21

The simulation tool

My Tools		×	\$
Thermoelectric Power Generator System Optimization and Cost Analysis	۲		^
Thermophotonic Selective Emitter Simulation	۲	-	
Thin-Film and Multi-Element Thermoelect Devices Simulator	ri	-	
Time-dependent gate oxide breakdown La	b		
TPV efficiency simulation			
Traction Force Microscopy	۲		
TRANSpull: computes pulling coupled to transport properties of single molecules.	۷	-	~

From the tools menu launch "Thermophotonics Selective Emitter Simulation", or simply click <u>https://nanohub.org/tools/tpxsim</u>

About the tool:

TPXsim is a GUI-based tool to calculate the emittance spectrum using the S-matrix approach and TPV system efficiency for a rare earth-based multi-layer structure emitter.

Learn more:

- Bermel, Peter, et al. "Design and global optimization of high-efficiency thermophotovoltaic systems." *Optics express* 18.103 (2010): A314-A334.
- S4: Stanford Stratified Structure Solver
- https://nanohub.org/tools/s4sim

What we will do

Objective

We will compute the emittance spectrum, the radiation efficiency and the TPV efficiency for the different structures mentioned in the paper.

Approach

- We will describe the selected structure using the GUI.
- Perform an optical simulation to obtain the absorption spectrum which is the same as the emittance spectrum according to Kirchhoff's law of thermal radiation.
- Perform electrical simulation to obtain a theoretical estiamtion of the TPV system efficiency.

An overview of the tool

ErAG emitter with AR coatings

	AR
I. Parts Of The Selective Emitter] II. S4 Simulation Parameters]	ErAG
Top Cavity Bottom	AR
Coating: Anti-reflection coating	
Anti-Reflection Coating Parameters Thickness of Top Anti-Reflection Layer in nanometers: 271.68 Refractive Index of the material: 1.35268	Specify the refractive index and thickness of the top and bottom
	AR coatings to be 1.35268 and 259.9 nm , respectively. The thickness is $\lambda/4$ at 1470 nm.
I. Parts Of The Selective Emitter II. S4 Simulation Parameters Top Cavity Bottom Selective Emitter Cavity material: Erbium Aluminium Garnet Text File: Enter the text file here	Specify the ErAG cavity
Choose "Upload" to upload your script from local disk	thickness in micrometers (125 and 250 for cases 1 & 2 respectively).
Thickness Of The Cavity (micrometers): 250	

Emitter Parameters

PURDUE

Q-matched ErAG emitter

I. Parts Of The Selective Emitter II. S4 Simulation Parameters Top Cavity Bottom Coating Dielectric Mirror Add a chirping function?: Chirping Function Exponential I 900-4500 This is the range of wavelengths over which chirping function is to be applied.	Select a dielectric mirror top coating, disable chirping and change the circled parameters. Click simulate.
Constant Value. 0.5 Enter a constant value you need as the power of the exponent / the number of which you want the logarit	hm / the slope of the linear function
Total Number of Layers 3	+ -
Choose the even function: (HL)^n	
Choose the odd function: L(HL)^n	_
Quarterwave Layer 1	
Refrative Index of material with Higher Refractive Index (H): 2	
Thickness of the material in nanometers: 183.75	
Deposition Rate in Area/sec: 0.580722222	
Quarterwave Layer 2	
Refrative Index of material with Lower Refractive Index (L) 1.4141	
Thickness of the material in nanometers: 259.86	
Deposition Rate in Area/sec: 0.24977778	

Simulate >

Q-matched ErAG emitter

I. Parts Of The Selective Emitter II. S4 Simulation Parameters	
Top Cavity Bottom Coating Dielectric Mirror	Select a dielectric mirror
Add a chirping function?:	chirning and change the
Chirping Function: Exponential	circled parameters
Enter Chirping Range: 1900-4500 This is the range of wavelengths over which chirping function is to be applied.	circleu parameters.
Constant Value: 0.5 Enter a constant value you need as the power of the exponent / the number of which you wan	t the logarithm / the slope of the linear function
Total Number of Layers: 21	+ -
Choose the even function: (HL)^n	
Choose the odd function: L(HL)^n	<u> </u>
Quarterwave Layer 1	
Refractive Index of material with Higher Refractive Index (H: 2	
Thickness of the material (nanometers): 183.75	
Deposition Rate in Area/sec: 0.580722222	
Quarterwave Layer 2	
Refractive Index of material with Lower Refractive Index (L) 1.4141	
Thickness of the material (nanometers): 259.86	
Deposition Rate in Area/sec: 0.249777778	

Simulate >

PURDUE

Chirped ErAG emitter

I. Parts Of the Selective Emitter II. 34 Simulation Parameters		
Top Cavity Bottom		
Coating: Dielectric Mirror	Select a dielectric mirror	
Add a chirping function?:	top coating with enabled	
Chirping Function: Exponential	chirping and change the	
Enter Chirping Range: 1900-4500 This is the range of wavelengths over which chirping function is to be applied.	circled parameters.	
Constant Value:	organithm (the slope of the linear function	
Total Number of Layers: 26	+ -	
Choose the even function: (HL)^n	<u> </u>	
Choose the odd function: L(HL)^n	<u>×</u>	
Quarterwave Layer 1		
Refrative Index of material with Higher Refractive Index (H)		
Thickness of the material in nanometers: 183.75		
Deposition Rate in Area/sec: 0.580722222		
Quarterwave Layer 2		
Refrative Index of material with Lower Refractive Index (L) 1.4141		
Thickness of the material in nanometers: 259.86		
Deposition Rate in Area/sec: 0.24977778		
	Simulato -	
	Simulate >	

Specify the emitter temperature

	● Input → ② Simulate	Questions?
	Select Parameters	
	Selective Emitter Filter System Parameters	
	Upload an emittance file?: 💿 🛲 🔄 no	
	Input Emittance file: Enter Here.	
Try different emitter temeratures e.g. 1573 K and 1323 K	The file format should have 2 columns: Wavelengths in nanometers and Emittance Values Emitter Parameters I. Parts Of The Selective Emitter K. S4 Simulation Parameters Emitter Temperature: 1573K Maximum Fourier Expansion Orders: 1	+ -
	Wavelength Parameters	
	default Reduced units -> Period: Type in a number or the word "default". Default means to set the period to 0.9 * wavelength_min. If you set it to 1, the frequency will have a unit of c/nm, where c is the speed of light.	
	Minimum Wavelength (nm): 900	
	Maximum Wavelength (nm): 5000	

nanoHUB.org

Remove or control the rugate filter

Select Parameters	
Selective Emitter Filter System Parameters	● Input → ② Simulate
Add a filter?: 🥃 📺 yes	
Filter Parameters	
Type of Filter: Rugate filter	
High Index: 1.91	Select Parameters
Low Index: 1.39	Selective Emitter Filter System Parameters
Bandgap: 0.37eV	Add a filter?:
Number of periods (bilayers): 20	
Number of materials(m): 6	
Relative Range: 0.3	
First Layer Thickness: 0	

Shift the rugate filter bandgap to 0.37 eV and keep other parameters to their default values

Enable /disable the rugate filter

nanoHUB.org

Specify system parameters

Select Parameters	
Selective Emitter Filter System Parameters	
External quantum_efficiency:	0.82
Band Gap:	0.75
room_temp:	300K
Device Ideality Factor:	1.171
Vlew Factor:	0.99
Dark Current Density (microAmperes per cm^2):	0.0011
Add a Contour Plot for variations in Bandgaps?:	e = no
Add a Contour Plot For Different number of Layers?:	e = no

Use the default values of system parameters and click simulate

Simulate >

Simulation Results

Change ErAG thickness

RDUE

The small discrepancy is because the tool does implement a random change in the layers thicknesses as deduced from experimental evidence

ErAG emitter	d (µm)	η (%) at 1323 K	η (%) at 1573 K	η _{rad} (%) at 1573 K	ē (%) at 1573 K	Top/bottom layers
Q-matched + rugate filter	125	17	24.32	51.4	6.12	3/21
Q-matched + rugate filter	250	15.34	22.58	44.53	10.44	3/21

nanoHUB.org

URDUE ERSIT

P

0

B

nanoHUB.org

RDUE

The small discrepancy is because the tool does implement a random change in the layers thicknesses as deduced from experimental evidence

nanoHUB.org

RDUE

The small discrepancy is because the tool does implement a random change in the layers thicknesses as deduced from experimental evidence

- Simulate other naturally-selective rare earth materials.
- Optimize the number of layers for the maximum TPV efficiency.

