

Negative index metamaterials

Negative electrical metamaterial + Negative magnetic metamaterial = Negative index metamaterial

Smith, et al., UCSD, PRL (2000)

The key to obtaining a NIM

To match magnetic resonance with negative permittivity band Similar magnitudes of $|\varepsilon|$ and $|\mu|$ are desirable for impedance matching

The first NIM in microwave

Transmission properties of the structure

Smith, et al., UCSD, PRL (2000)

Inverses Snell's law in microwave verified

2D waveguide

3D free space

The Boeing Cube

Smith, et al., UCSD, Science (2001)

Parazzoli, et al., Boeing, PRL (2003)

Nanorod arrays: the first optical NIM

Nanorod arrays support both electrical and magnetic resonances

The overlapping of the two resonances cannot be achieved exactly. Therefore the figure of merit is low.

@ 1.5 μm

$$\sum_{\substack{\nu'>0\\\varepsilon'\mid\mu\mid+\mu'\mid\varepsilon\mid<0}}^{\mu'>0} n'<0$$

AFM

SEM

Shalaev, et al., OL (2005)

Optical properties of Nanorod Structure

- Strong resonance behavior for parallel pol.; Substrate-like for perpendicular pol.
- In consistency with the T, R spectra

Simulated cross-sectional field map of the magnetic field

$Re(n) = -0.3 \pm 0.1$ at ~1.5 µm is obtained

• (Opt. Lett. 30, 3356 (2005); first reported in arXive/physics/0504091, Apr 13, 2005;)

$$\cos nk\Delta = \frac{1 - r^2 + n_s t^2}{(n_s + 1)t + rt(n_s - 1)}$$

Refractive index is retrieved from direct measurement of complex r & t coefficients

The inverted system: coupled void pairs

Experimental demonstration of negative n at ~ 1.8 μ m.

Zhang, et al., UNM and Columbia group, 2005

The coupled voids arrays structure is the prototype of the optical "Fishnet", the state-of-the-art NIM design.

General guideline for optical NIM design

College

of Engineering

PURDUE

Problem:

 Magnetic and electric resonances occur at different wavelengths

Solution:

 Use broadband, non-resonant, diluted metal for negative ε

Examples of optical NIM designs (resonant μ + broadband ε)

Nanorod pairs + thin metal wires

Soukoulis, et al., 2006

Nanor-plate pairs + thin metal wire pairs = "optical fishnet"

Zhang, et al., UNM & Columbia, 2006

Nano-strip pairs + semicontinuous film

Chattier, et al (Purdue); OE (2006)

Optical fishnet: a double-negative structure

Simultaneously negative Vp and Vg in Fishnet

Dolling, et al., Science, 2006

Purdue

Progress in optical NIMs

Year and Research group	1st time posted and publication	Refractive index, n'	Wavelength λ	Figure of Merit F=/n ¶/n "	Structure used
<u>2005:</u>					
Purdue	April 13 (2005) arXiv:physics/0504091 Opt. Lett. (2005)	-0.3	1.5 μm	0.1	Paired nanorods
UNM & Columbia	April 28 (2005) arXiv:physics/0504208 Phys. Rev. Lett. (2005)	-2	2.0 μm	0.5	Nano-fishnet with round voids
<u>2006:</u>					
UNM & Columbia	J. of OSA B (2006)	-4	1.8 μm	2.0	Nano-fishnet with round voids
Karlsruhe & ISU	Opt. Lett. (2006)	-1 *	1.4 μm	3.0	Nano-fishnet with rectangular voids
Karlsruhe & ISU	In press	-0.6	780 nm	0.5	Nano-fishnet with rectangular voids

* Minimum n' is -2 occurring at 1.45 μ m with F=1.5

From Low- to no Loss NIMs: Is it for Real?

- b) NC gain beads
- c) π -conjugated polymer
- d) dyes

Raman amplification in Si waveguide with

metal-nanorod ONIM on top

q~100cm⁻¹ at P~1mW

Inverse Design Problem: from Desired Functionality to Optimized Design

Paired Metal Strips

Negative μ and ϵ

Optimum at λ = 584 nm, n = - 1.30 + 0.39i

E

NIMs with no Losses

16-Nov-06

College

^{of}Engineering

PURDUE

Outline

- > What are metamaterials?
- Electrical metamaterials
- Magnetic metamaterials
- Negative-index metamaterials
- Perfect lens, superlens, & other
- Optical cloaking

Imaging with NIM-lens: Amplification of Evanescent Waves Enables sub- λ Image!

Perfect Lens

College

of Engineering

Purdue

The Poor Man's (Near-Field) Superlens ($\epsilon < 0, \mu = 1$)

Near-Field Tunable Super-Lens Based on Metal-Dielectric Composites

$$p\frac{\varepsilon_m - \varepsilon_e}{\varepsilon_m + (d-1)\varepsilon_e} + (1-p)\frac{\varepsilon_d - \varepsilon_e}{\varepsilon_d + (d-1)\varepsilon_e} = 0$$

$$\operatorname{Re}[\varepsilon_{e}(\varepsilon_{m},\varepsilon_{d},p,\lambda)] = -\varepsilon_{h}$$

PRB 72, 193101 (2005)

object plane
host medium
$$\varepsilon_h$$

metal-dielectric film $\varepsilon_e(p,\lambda)$
host medium ε_h
image plane
 ε_h
 ε_h

Tunable Superlens: Controlling Operational λ

Performance of Composite NFSL with Si or SiC as Host

The required filling factor for different wavelengths:

The value $\epsilon_e''/|\epsilon_e'|$ for different wavelengths:

- The upper limit of the operational range is taken such that $\varepsilon_e''/|\varepsilon_e'| = 0.1$
- The whole possible spectral range is $[0.47, 0.67] \cup [0.61, 1.10] = [0.47, 1.10] \mu m$

Imaging with a Composite Superlens

Example:

Wavelength:632.8nm (He-Ne)Host medium:SiC $p=0.82; \epsilon_h=6.94; \epsilon_e=-6.94+0.31i$ Lens thickness:d=20nmObject:slit-pair with 20nm width and 40nm
center-to-center separation

Possible applications of the near-filed superlens

Outline

- > What are metamaterials?
- Electrical metamaterials
- Magnetic metamaterials
- Negative-index metamaterials
- Perfect lens and superlens
- Optical cloaking intro

Optical metamaterials: A route to invisibility?

Optical metamaterials provide unprecedented control of electromagnetic fields

If we can change the path of light at will...

Invisibility in Mythology, Folklore and Fictions

Ancient time:

- Perseus' helmet in Greek Mythology
- The ring of Gyges in Plato's The Republic

▶ ...

Modern time:

- Harry Potter's invisibility cloak
- The stealth shield of NOD in Command & Conquer
- > The Invisible Man by H. Wells
- > The Invisible Woman by Lee & Kirby
- ▶ ...

Invisibility in nature, physics and technology

- Natural camouflage
- Black hole
- ...

Current technologies to achieve invi

Stealth technique:

Radar cross-section reductions by absorbing paint / non-metallic frame / shape effect...

Optical Camouflage, Tachi Lab, U. of Tokyo, Japan

Cloaking ≠ Invisibility

- Cloaking is more than invisibility or camouflage
 - Camouflage: an adaptation to the surrounding environment
 - Cloaking: No need to adapt to a particular environment, with the ultimate goal of transparency — no scattering; no shade
- Criteria for an ideal cloak
 - Macroscopic, no limit to subwavelength size or near field region
 - Independent of object to be cloaked
 - Minimized absorption and scattering
 - Broadband

- ...

A similarity in Mother Nature

The bending of light due to the gradient in refractive index in a desert mirage

Transformation of Maxwell's equations

Spatial profile of ϵ & μ tensors determines the distortion of coordinate

Seeking for profile of ϵ & μ to make light avoid particular region in space — optical cloaking

Pendry et al., Science, 2006

Cloaking in spherical system

The transformation in spherical system:

Pendry et al., Science, 2006

Similar idea was proposed by Leonhardt, Science, 2006

Experimental demonstration at microwave frequency

Making objects invisible in the visible

<u>Cloaking in the visible range:</u> <u>Invisibility in the visible?</u>

work is in progress....stay tuned

Increasingly keen interest to the topic

Journal articles with "metamaterial" in titles, abstracts or keywords

Take-Home Messages

 \bullet NIMs with $\mu{<}0$ and and n<0 in the visible and in the optical range

-> Metamaterials make light "two-handed"

- Superlens and tunable composite NF superlens
- Major problem of losses can be addressed by using gain materials
- Novel NLO in NIMs
- "n<0-physics" is fun with lots of potential applications: Nanoscale imaging Photolithography Sensing Nano-Photonics (sources, waveguides, switches, etc.) Cloaking