
Lecture 9: Introduction to Metal Optics

 5 nm



What happened at the previous lectures ?

Microparticles

•  Particles with d ≈  λ (λ-independent scattering, white clouds)

• Insulators (Rayleigh Scattering, blue sky..)

• Semiconductors (Size dependent absorption, fluorescence..)

• Metals…Resonant absorption at ωsp 

•  Particles with d >> λ (Intuitive ray-picture useful)

Light interaction with small objects (d < λ)

Dielectric photonic crystal

• Molding the flow of light 

What happened at the previous lectures ?



Metal Optics: An Introduction
Majority of optical components based on dielectrics  

• High speed, high bandwidth (ω), but…

Some fundamental problems!

nCORE

nCLAD

Diffraction Limit

Optical mode in waveguide > λ0/2nCORE 

• Does not scale well Needed for large scale integration

J. D. Joannopoulos, et al, Nature, vol.386, p.143-9  (1997) 

Problems
Bending losses

Solutions ?

Some:
Photonic functionality based on metals?!

Metal Optics: An Introduction



Plasmon-Polaritons
What is a plasmon ?

• Compare electron gas in a metal and real gas of molecules

• Metals are expected to allow for electron density waves: plasmons

Strong local field

Metal

Dielectric

z

I

E

H
Note: This is a TM wave

• Sometimes called a surface plasmon-polariton (strong coupling to EM field)

Surface plasmon

Bulk plasmon
• Metals allow for EM wave propagation above the plasma frequency

They become transparent!

Plasmon-Polaritons



Local Field Intensity Depends on Wavelength

Long wavelength Short wavelength
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D << λo

Characteristics plasmon-polariton • Strong localization of the EM field
• High local field intensities easy to obtain

Applications: • Guiding of light below the diffraction limit (near-field optics)
• Non-linear optics
• Sensitive optical studies of surfaces and interfaces
• Bio-sensors
• Study film growth
• ……

Local Field Intensity Depends on Wavelength



R.M. Dickson and L. A. Lyon, J. Phys. Chem. B 104, 6095-6098 (2000)

Laser excitation
λ = 532 nm

8.1 µm Au rod

Light at the other end

Plasmon-Polariton Propagation in Au rod

Plasmon-Polariton Propagation in Au rod



Plasmon-Polariton Excitation using a Launch Pad

J.R. Krenn et al., Europhys.Lett. 60, 663-669 (2002)

Plasmon-Polariton Excitation using a Launch Pad



50 nm

• Array of 50 nanometer diameter Au particles spaced by 75 nanometer

• Information transport at speeds and densities exceeding current electronics 

• Enables communication between nanoscale devices 

M.L. Brongersma, et al., Phys. Rev. B 62, R16356 (2000)
S.A. Maier et al., Advanced materials 13, 1501 (2001)

• Guides electromagnetic energy at optical frequency below the diffraction limit 



Purdue Near-Field Optical Microscope

• Nanonics MultiView 2000
• NSOM / AFM
• Tuning Fork Feedback

Control
– Normal or Shear Force

• Aperture tips down to 50 nm
• AFM tips down to 30 nm
• Radiation Source

– 532 nm
Picture taken from Nanonics
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Metal optics will make your dreams come true….Enhanced Transmission through Sub-λ Apertures

T.Thio et al., Optics Letters 26, 1972-1974 (2001).

• Ag film with a 440 nm diameter hole
surrounded by circular grooves

• 3x more light than directly impingent on hole !

• Reason: Excitation of plasmon-polaritons

• Transmission enhancement of 10 x
compared to a bare hole

Enhanced Transmission through Sub-λ Apertures



Optical Properties of an Electron Gas (Metal)
Dielectric constant of a free electron gas (no interband transitions)
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Optical Properties of an Electron Gas (Metal)



Dispersion Relation for EM Waves in Electron Gas
Determination of dispersion relation for bulk plasmons
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• The wave equation is given by:

• Investigate solutions of the form: ( ) ( ) ( ){ }, Re , expt i i t! != " #E r E r k r
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Note1: Solutions lie above light line
Note2: Metals: ħωp ≈ 10 eV; Semiconductors ħωp < 0.5 eV (depending on dopant conc.)

Dispersion Relation for EM Waves in Electron Gas



Dispersion Relation Surface-Plasmon Polaritons
Solve Maxwell’s equations with boundary conditions

• Maxwell’s Equations in medium i (i = metal or dielectric):
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• At the boundary:
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Dispersion Relation Surface-Plasmon Polaritons
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Dispersion Relation Surface-Plasmon Polaritons

• Start with curl equation for H in medium i (as we did for EM waves in vacuum)
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Dispersion Relation Surface-Plasmon Polaritons



Dispersion Relation Surface-Plasmon Polaritons

Relations between k vectors

• Condition for SP’s to exist: zm zd
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Dispersion relation

homework

Example Air

SiO2true at any boundary

Dispersion Relation Surface-Plasmon Polaritons



Dispersion Relation Surface-Plasmon Polaritons
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Plot of the dispersion relation

• Last page:

• Plot dielectric constants

• Low ω: 
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• Note: Solution lies below the light line

Dispersion Relation Surface-Plasmon Polaritons



Dispersion Relation Surface-Plasmon Polaritons

Dispersion relation plasma modes and SPP

• Note: Higher index medium on metal results in lower ωsp
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Dispersion Relation Surface-Plasmon Polaritons



Excitation Surface-Plasmon Polaritons with Electrons

Excitation with electrons

• First experiments with high energy electrons

• Whole dispersion relation can be investigated

• Measurement: Energy loss
Direction of e’s:

• Low k’s are hard!

Example: 50 keV has a λ = 0.005 nm << λlight

kelectron >> klight

Stringent requirement on divergence e- beam

Excitation Surface-Plasmon Polaritons with Electrons



• The operating speed of data transporting and processing systems

 The ever-increasing need for faster information processing and transport is undeniable

Electronic components are running out of steam due to issues with RC-delay times

Nanophotonics with Plasmonics: A
logical next step?
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Plasmonics?

CMOS Electronics

Photonics

Time

Communication networks 

CMOS Electronics

Plasmonics

(µm-scale structures ~ 1µm)
(nm-scale structures)

Nanophotonics with Plasmonics: A logical next step?
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Electronics is aspect-ratio limited in speed!

As data rates AND component packing densities INCREASE, 

electrical interconnects become progressively limited by RC-delay:

L
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Why not electronics?

Why not electronics?



The bit rate in optical communications is fundamentally limited 

only by the carrier frequency: Bmax < f ~ 100 Tbit/s (!), 

but light propagation is subjected to diffraction:
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Photonics is diffraction- limited in size!

Why not photonics?

Why not photonics?
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Dispersion Relation for SPPs:

λp ~ very small

Why Plasmonics?

optical ω
nm-scale λ
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λsp

εd > 0
εm < 0

SP wavelengths can reach nanoscale at optical frequencies!
SPPs are “x-ray waves” with optical frequencies

Why Plasmonics?



Why nanophotonics needs plasmons?

Courtesy of M. Brongersma


