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Photonic crystal: An Introduction

Photonic crystal:

Periodic arrangement of dielectric (metallic, polaritonic…) objects.
Lattice constants comparable to the wavelength of light in the material.

Photonic crystal: An Introduction



“ A worm ahead of its time”

http://www.physics.usyd.edu.au/~nicolae/seamouse.html

20cm

Sea Mouse and its hair 

Normal incident light

Off-Normal incident light

“ A worm ahead of its time”



Fast forward to 1987……

E. Yablonovitch
“Inhibited spontaneous emission in solid state physics and electronics”
Physical Review Letters, vol. 58, pp. 2059, 1987

S. John
“Strong localization of photons in certain disordered dielectric superlattices”
Physical Review Letters, vol. 58, pp. 2486, 1987

Face-centered cubic lattice Complete photonic band gap

Fast forward to 1987……



Omni-directional reflector

B. Temelkuran et al, Nature, vol.420, p.650 -3  (2002) Y. Fink, et al, Science, vol.282, p.1679  (1998) 

Omni-directional reflector



Integrated photonic circuits and photonic crystal fibers

J. D. Joannopoulos, et al, Nature, vol.386, p.143-9  (1997) R. F. Cregan, et al, Science, vol.285, p.1537-9  (1999) 

Integrated photonic circuits and
photonic crystal fibers



Three-dimensional photonic crystals

S. Lin et al, Nature, vol. 394, p. 251-3, (1998)Y. A. Vaslov, Nature, vol.414, p.289-93 (2001) 

Three-dimensional photonic crystals



The emphasis of recent breakthroughs

•The use of strong index contrast,  and the developments of nano-
fabrication technologies, which leads to entirely new sets of phenomena.

Conventional silica fiber, δn~0.01, photonic crystal structure, δn ~ 1

•New conceptual framework in optics

Band structure concepts.
Coupled mode theory approach for photon transport.

•Photonic crystal: semiconductors for light.

The emphasis of recent
breakthroughs



Two-dimensional photonic crystal

High-index
dielectric material,
e.g. Si or GaAs

λ ∼ 1.5 µm

a

Two-dimensional photonic crystal



Band structure of a two-dimensional crystal
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Displacement field parallel to the cylinder

Wavevector determines the phase between nearest neighbor unit cells.
X: (0.5*2π/a, 0): Thus, nearest neighbor unit cell along the x-direction is 180

degree out-of-phase
M: (0.5*2π/a, 0.5*2π/a): nearest neighbor unit cell along the diagonal direction

is 180 degree out-of-phase

Band structure of a two-dimensional
crystal



Maxwell’s equation in the steady state

Time-dependent Maxwell’s equation in dielectric media:

Time harmonic mode (i.e. steady state):

Maxwell equation for the steady state:

! 

"•H r, t( ) = 0

! 

"•#E r, t( ) = 0

! 

"#H r, t( ) $% r( )
& %

0
E r, t( )( )
&t

= 0

! 

" #E r,t( ) +
$ µ

0
H r,t( )( )
$t

= 0

! 

H r,t( ) =H r( )e"i#t

! 

E r,t( ) = E r( )e"i#t

! 

" #E r( ) $ i% µ
0
H r( )( ) = 0

! 

" #H r( ) + i$ % r( )%0E r( )( ) = 0

Maxwell’s equation in the steady
state



Master’s equation for steady state in dielectric

Expressing the equation in magnetic field only:

Thus, the Maxwell’s equation for the steady state can be expressed in
terms of an eigenvalue problem, in direct analogy to quantum
mechanics that governs the properties of electrons.

Quantum mechanics Electromagnetism

Field

Eigen-value problem

Operator
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Master’s equation for steady state in
dielectric



Electromagnetism as an eigenvalue problem

The master equations define an operator:

Importantly, the Θ operator is a Hermitian operator. If we define the
inner product of two vector fields F(r) and G(r) as:

then
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Electromagnetism as an eigenvalue
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General property of the harmonic modes

Having the Θ operator to be Hermitian leads to a number of nice properties
about the harmonic modes

Assuming that H(r) is an eigen-mode, i.e.

ω2 is real.

ω2 is positive.

Two modes H1(r)  and H2(r) at different frequencies ω1 and ω2 are orthogonal, i.e.
(H1, H2) = 0

Thus if ω1 and ω2 are different, then (H1, H2) = 0.
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Consequence of the orthogonality

For two real one-dimensional function f(x)
and g(x) to be orthogonal, i.e.

Thus, the product fg must be negative as
much as it is positive over the interval of
interest, so that the net integral vanishes.

Since the operator

contains derivative with respect to the field,
higher-frequency mode tends to have more
spatial variation in their field patterns.

By orthogonality, higher-frequency mode
tends to have more nodal plane in the field
pattern.
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Consequence of the orthogonality



Scale Invariance

Suppose, for example, we have an electromagnetic steady
state H(r) in a dielectric configuration ε(r)

Then, in a configuration of dielectric ε’(r’) that is just a compressed or
expanded version of ε: ε’(r’) = ε(r’/s), Using r’ = sr, H(r’/s) = H’(r’), and

The solution at one scale determines the solution at all other length scales.
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Scale Invariance



Normalized units

The lattice constant: a

Frequency: c/a

Angular frequency: 2πc/a

Wavevector: 2π/a

The units of the following physical quantities become:

Wavelength: a

a
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A simple example for reading the band diagram

Gap extends from 0.2837 c/a to 0.4183 c/a
The mid gap frequency is at 0.3510 c/a

To design a crystal such that  1.55 micron
light falls at the center of the gap, we have

c/(1.55micron) = 0.3510 c/a, hence
a = 0.3510 * 1.55 micron = 0.5440 micron

Normalized units



Electromagnetic energy and the variational principle

From the Master equations:
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Integral form:
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Concentration of the displacement field D
in the high dielectric constant region
minimizes the frequency.

Electromagnetic energy and the
variational principle



Vacuum: ε=1, µ=1, plane-wave solution to the Maxwell’s equation:

A simple example of the band-structure: vacuum (1d)
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A band structure, or dispersion relation defines the relation
between the frequency ω, and the wavevector k.
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For a one-dimensional system, the band
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A simple example of the band-
structure: vacuum (1d)



Light cone

Visualization of the vacuum band structure (2d)

For a two-dimensional system:

! 

" = c kx
2

+ ky
2

A few ways to visualize this band structure :
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This function depicts a cone: light cone.
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Band diagram along
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Visualization of the vacuum band
structure (2d)



Electromagnetic energy and the variational principle

From the Master equations:
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in the high dielectric constant region
minimizes the frequency.

Electromagnetic energy and the
variational principle



Light cone

Visualization of the vacuum band structure (2d)

For a two-dimensional system:
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Bloch theorem for electromagnetism

In a periodic dielectric media, i.e. ε(r+a)=ε(r), the solution H(r) to the
Master’s equation:

has to satisfy the following relations:

where uk(r) = uk(r+a) is a periodic function.
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Bloch theorem for electromagnetism



Bloch wave functions
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Bloch wave functions



A simple proof of Bloch theorem

x
a

Where uk(x+a) = uk(x)

Proof in 1 dimension
• Consider N identical lattice points on a ring of length Na

• The dielectric function is periodic in a, with ε(x)=ε(x+sa), where s is an integer

• Translational symmetry Expect solutions of the wave equation 

H(x+a) = C H(x)

• Going once around the ring: H(x+Na)  = H(x) = CN H(x)

C is one of the N roots of unity: C = exp(i2πs/N); s = 0, 1, 2, …, N-1

• Bloch function H(x) = uk(x) exp(i2πsx/(Na))

n-times

satisfies H(x+a) = C H(x)

o

H(x+Na)  = H(x)

(Solid state Phys. Kittel, p179-180)

A simple proof of Bloch theorem



Bragg scattering

Incident light

eikx

a

re-ikx

Regardless of how small the reflectivity r is from an individual scatter, the
total reflection R from a semi infinite structure:
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Light can not propagate in a crystal, when the
frequency of the incident light is such that the
Bragg condition is satisfied

Origin of the photonic
band gap

Bragg scattering



A brief review of the reciprocal lattice See Kittel, pp. 32-33

• For a given set of lattice vectors, a1, a2 and a3, the set of basis vectors for
the reciprocal lattice is:
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The reciprocal lattice vector G are:                                   , where n1, n2, n3 are
arbitrary integers.
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•The reciprocal lattice vector G is defined by:
 where a is any lattice vector of the crystal.
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A brief review of the reciprocal
lattice



Summary
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•Photonic crystals are artificial
media with a periodic index
contrast.

•Electromagnetic wave in a
photonic crystal is described by a
band structure, which relates the
frequency of modes to the
wavevectors.

•Fundamental properties of
modes: scale invariance,
orthogonality.

Summary


