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Microparticles

•  Particles with dimensions on the order of λ or bigger

• Insulators…Rayleigh Scattering (blue sky)

• Semiconductors....Resonance absorption at ħω ≥ EGAP , size dependent fluorescence…)

• Metals…Resonance absorption at surface plasmon frequency, no light emission)

Nanoparticles 

• Light scattering due to harmonically driven dipole oscillator

Enhanced forward scattering

Applications: resonators, lasers, etc…

Intuitive ray-picture useful

Rainbows due to dispersion H20

Light Interaction with Small Structures
Molecules

Light Interaction with Small Structures



Light Interaction with a Small Object
Electric field drives harmonic motion of electrons

• Consider the Lorentz model
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Oscillating charges radiates 
• This radiation is the scattered light intensity

• What does this process look like? 

Light Interaction with a Small Object
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Oscillating charges Emits EM Waves

+-

E-field lines start at positive charge

E and H fields from oscillating charges

E-field lines end at negative charge

E-field lines close upon themselves
       (field lines cannot cross)

The start of an EM wave After several periods

Radiation mainly ⊥ to oscillation direction

Oscillating charges Emits EM Waves



Oscillating charges Emit EM Waves
Radiation is angle dependent

• Radiated intensity:
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• Radiated pattern:

• Total scattered radiation:
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Closed surface around the dipole

Derivation: Feynman lectures on physics (or Ramo, et al)

Oscillating charges Emit EM Waves



Radiation Emitted by a Lorentz Oscillator
Scattered intensity from a Lorentz Oscillator
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• Scattered intensity by a dipole:
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• Lorentz model: 

• Lorentz model: 
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• Strongest scattering near a resonance

• Strongest scattering for higher ω or shorter λ

• Scattering occurs both in the forward and backward directions

Conclusions Incoming intensity

Radiation Emitted by a Lorentz Oscillator



The Blue Sky

• λ two times shorter Scattering 24
 = 16 times stronger
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• In the visible: O2, and N2 molecules have : ω0 >> ω

Incoming sun light
containing a range of λ’s 

Long λ hardly get 
scattered

• Similar situation for insulating nanoparticles,

Non-resonant scattering

The Blue Sky
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D: 1-5 nm

C.Delerue et al. Phys Rev. B 48, 11024 (1993)

Example: Si nanocrystals

Semiconductor Nanoparticles

Photoluminescence

Semiconductor Nanoparticles



SiO2   Si
50 keV Si High resolution TEM image

 Implantation: 5x1016 Si @ 50 keV → 100 nm SiO2

 Anneal: 1100 °C/10 min in vacuum

 Hydrogen passivation to 1) quench defect luminescence

2) increase fraction of optically active nanocrystals

Ion Beam Synthesis of Si nanocrystals

Synthesis of Si nanocrystals

Ion Beam Synthesis of Si nanocrystals
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Tuning of the λEmission of Si Nanocrystals by Oxidation

     Si       + O2               Si       +  SiO2

 Oxidation of Si nanocrystals at T = 1000 °C

 Peak wavelength tunable over more than 300 nm

Experimental parameters

P = 10 mW/mm2

 λEXC= 458 nm

T = 293 K

Tuning of the λEmission of Si
Nanocrystals by Oxidation



M.Bruchez et al. (Alivisatos group), Science, 2013, 281 (2014)

Size and Material Dependent Optical Properties

• Blue series: CdSe nanocrystals with diameters of 2.1, 2.4,3.1, 3.6, and 4.6 nm
• Green series: InP nanocrystals with diameters of 3.0, 3.5,and 4.6 nm.
• Red series: InAs nanocrystals with diameters of 2.8, 3.6, 4.6, and 6.0 nm
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Size and Material Dependent Optical Properties



• Confocal microscopy image of Mouse fibroblasts
• Labeling with semiconductor nanoparticles
• 363-nm excitation, observation in the visible

Tagging Biomaterials with Semiconductor Nanocrystals

Tagging Biomaterials with Semiconductor Nanocrystals



Excitation of a Metal Nanoparticle
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Ag cluster
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Homework problem 

Excitation of a Metal Nanoparticle



• Engraved Czechoslovakian glass vase
• Ag nanoparticles cause yellow coloration
• Au nanoparticles cause red coloration
• Molten glass readily dissolves 0.1 % Au
• Slow cooling results in nucleation and growth of nanoparticles

Applications Metallic Nanoparticles

Applications Metallic Nanoparticles



Light scattering by particles with d ≈ λ

• Red circle intensity from polarization out of the plane

Scattering from a driven dipole d << λ

• Black curve show total scattering pattern for a random incident polarization

1+ sin2θ

Scattering from a particle with size d ≈ λ

• More forward scattering

sin2θ

1

Light scattering by particles with d ≈
λ



Light interaction with particles d ≈ λ

1+ sin2θ

sin2

θ

1Particle d << λ

Particle d ≈ λ

Particle d ≈ 2λ

• Very strong forward scattering 

• Scattering intensities similar for different colors (white clouds!)

• Scattering maxima occur in different directions for different colors

• Scattering is more forward

Light interaction with particles d ≈ λ



Light interaction with particles d >> λ

Ray pictures of light become appropriate

• Example: explanation of rainbows

Sunlight
Rain

Anti solar point
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Light interaction with particles d >>
λ



Microspheres with diameters d >> λ

100 µm diameter SiO2 Microsphere

Synthesis of Microspheres

Microspheres with diameters d >> λ



Coupling Light into a SiO2 Microsphere

 Coupling light into a whispering gallery mode using a tapered fiber

* Ming Cai, Oskar Painter, and Kerry Vahala, Phys Rev. Lett. 85, 74 (2000) 

Pump, ν 

few µm
PT

ν

Q = Δν/ν

Whispering
     Gallery
        Mode

Symmetry
axis

Taper-sphere
Coupling region

Fiber output

Control rod
“Stem”

η = 99.8%

Coupling Light into a SiO2
Microsphere



(n,l,m)

Microsphere Doped with Er ions 

• Similarity with electron orbits
• Er doped sphere lases ! (Consider roundtrip loss and gain)

Microsphere Doped with Er ions



 Determined by quality factor Q =

 Q-values of 103 - 104 are considered excellent

 Measured Q-value of a SiO2 microsphere resonator:  ∼ 1010
.! *

  Photon storage time ∼ µs

 Photon comes around 106 times for D = 100 µm

 Ultimate Q of 1010 is limited by intrinsic material properties

Microsphere can act as a Microresonator
Performance

Photon lifetime
Optical period

* M.L. Gorodetsky, A.A. Savchenkov, and V.S. Ilchenko, Opt. Lett. 21, 453 (1996)

Microsphere can act as a
Microresonator



 Low threshold micro-lasers

 Narrow linewidth optical filters

 Sensors with submonolayer sensitivity

 Wavelength Division Multiplexing devices for telecommunications

 Non-linear optics

 Quantum electrodynamics experiments

MicrOspheres: Devices and Applications

Comparison with more conventional resonators

Devices and applications

 Examples:           or or

 Characteristic dimensions: λ - 100λ

MicrOspheres: Devices and
Applications



Summary

Microparticles

•  Particles with dimensions on the order of λ

• Insulators…Rayleigh Scattering (blue sky)

• Semiconductors....Resonance absorption at ħω ≥ EGAP , size dependent fluorescence…)

• Metals…Resonance absorption at surface plasmon frequency, no light emission)

Nanoparticles 

•  Microspheres with diameters much larger than λ

Light interaction with small objects (d < λ)
• Light scattering due to harmonically driven dipole oscillator

λ-independent  (white clouds)
Enhanced forward scattering

Applications: resonators, lasers, etc…

Intuitive ray-picture useful

Rainbows due to dispersion H20

Summary


