Lecture 4: Electromagnetic Properties of Molecules, Nano, and Microscopic Particles

Light Interaction with Small Structures

Molecules

• Light scattering due to harmonically driven dipole oscillator

Nanoparticles

- Insulators...Rayleigh Scattering (blue sky)
- Semiconductors....Resonance absorption at $\hbar \omega \ge E_{GAP}$, size dependent fluorescence...)
- Metals...Resonance absorption at surface plasmon frequency, no light emission)

Microparticles

- Particles with dimensions on the order of λ or bigger
 - Enhanced forward scattering
 - ➡ Intuitive ray-picture useful
 - Rainbows due to dispersion H_20
 - Applications: resonators, lasers, etc...

Light Interaction with a Small Object

Electric field drives harmonic motion of electrons

Consider the Lorentz model

Oscillating charges radiates

• This radiation is the scattered light intensity

• What does this process look like?

Oscillating charges Emits EM Waves

E and H fields from oscillating charges

E-field lines start at positive charge E-field lines end at negative charge

The start of an EM wave

E-field lines close upon themselves (field lines cannot cross)

 $\begin{array}{l} \mbox{After several periods} \\ \mbox{Radiation mainly} \perp \mbox{to oscillation direction} \end{array}$

Oscillating charges Emit EM Waves

Radiation is angle dependent

• Radiated intensity:
$$I = \frac{p^2 \omega^4}{32\pi^2 \varepsilon_0 c^3 r^2} \sin^2 \theta$$

Derivation: Feynman lectures on physics (or Ramo, et al)

• Radiated pattern:

• Total scattered radiation:
$$P_S = \int_A I dA' = \frac{p_0^2 \omega^4}{12\pi\epsilon_0 c^3}$$

Closed surface around the dipole

Radiation Emitted by a Lorentz Oscillator

Scattered intensity from a Lorentz Oscillator

• Scattered intensity by a dipole:
$$I = \frac{p^2 \omega^4}{32\pi^2 \varepsilon_0 c^3 r^2} \sin^2 \theta$$

• Lorentz model: $\mathbf{p} = \frac{e^2}{m} \frac{1}{\omega_0^2 - \omega^2 - i\gamma\omega} \mathbf{E}_L$

• Lorentz model:
$$I_{S} = \frac{e^{4}\omega^{4}}{32\pi^{2}m^{2}\varepsilon_{0}c^{3}r^{2}} \left(\frac{1}{\omega_{0}^{2} - \omega^{2} - i\gamma\omega}\right)^{2} E_{L}^{2} \sin^{2}\theta$$

Conclusions

Incoming intensity

- Strongest scattering near a resonance
- Strongest scattering for higher ω or shorter λ
- Scattering occurs both in the forward and backward directions

The Blue Sky

Incoming sun light containing a range of λ 's

• In the visible: O_2 , and N_2 molecules have : $\omega_0 >> \omega$

$$\Box \rangle I_{S} = \frac{e^{4}\omega^{4}}{32\pi^{2}m^{2}\varepsilon_{0}c^{3}r^{2}} \frac{1}{\omega_{0}^{2} = \omega^{2} - i\gamma\omega} E^{2}\sin^{2}\theta$$

• λ two times shorter \square Scattering 2⁴ = 16 times stronger

• Similar situation for insulating nanoparticles,

Semiconductor Nanoparticles

Example: Si nanocrystals

Ion Beam Synthesis of Si nanocrystals

Synthesis of Si nanocrystals

- Implantation: $5x10^{16}$ Si @ 50 keV \rightarrow 100 nm SiO₂
- Anneal: 1100 °C/10 min in vacuum
- Hydrogen passivation to 1) quench defect luminescence

2) increase fraction of optically active nanocrystals

Tuning of the $\lambda_{\text{Emission}}$ of Si Nanocrystals by Oxidation

Oxidation of Si nanocrystals at T = 1000 °C

• Peak wavelength tunable over more than 300 nm

Experimental parameters P = 10 mW/mm² λ_{EXC} = 458 nm T = 293 K

Size and Material Dependent Optical Properties

- Red series: InAs nanocrystals with diameters of 2.8, 3.6, 4.6, and 6.0 nm
- Green series: InP nanocrystals with diameters of 3.0, 3.5, and 4.6 nm.
- Blue series: CdSe nanocrystals with diameters of 2.1, 2.4, 3.1, 3.6, and 4.6 nm

M.Bruchez et al. (Alivisatos group), Science, 2013, 281 (2014)

Tagging Biomaterials with Semiconductor Nanocrystals

- Confocal microscopy image of Mouse fibroblasts
- Labeling with semiconductor nanoparticles
- 363-nm excitation, observation in the visible

Excitation of a Metal Nanoparticle

Homework problem 🕑

Applications Metallic Nanoparticles

- Engraved Czechoslovakian glass vase
- Ag nanoparticles cause yellow coloration
- Au nanoparticles cause red coloration
- Molten glass readily dissolves 0.1 % Au
- Slow cooling results in nucleation and growth of nanoparticles

Light scattering by particles with $d \approx \lambda$

Scattering from a driven dipole d << λ

- Red circle intensity from polarization out of the plane
- Black curve show total scattering pattern for a random incident polarization

Scattering from a particle with size d $\approx \lambda$

Particle d << λ

Particle d $\approx \lambda$

Scattering is more forward

Particle d $\approx 2\lambda$

- Very strong forward scattering
- Scattering intensities similar for different colors (white clouds!)
- Scattering maxima occur in different directions for different colors

Light interaction with particles d >> λ

Ray pictures of light become appropriate

• Example: explanation of rainbows

Microspheres with diameters d >> λ

100 μm diameter SiO_2 Microsphere

Synthesis of Microspheres

Coupling Light into a SiO₂ Microsphere

• Coupling light into a whispering gallery mode using a tapered fiber

* Ming Cai, Oskar Painter, and Kerry Vahala, Phys Rev. Lett. 85, 74 (2000)

Microsphere Doped with Er ions

- Similarity with electron orbits
- Er doped sphere lases ! (Consider roundtrip loss and gain)

Microsphere can act as a Microresonator

Performance

- Determined by quality factor Q = <u>Photon lifetime</u> Optical period
- Q-values of 10³ 10⁴ are considered excellent
- Measured Q-value of a SiO₂ microsphere resonator: $\sim 10^{10}$!*

Photon storage time $\sim \mu s$

Photon comes around 10^6 times for D = 100 μ m

- Ultimate Q of 10¹⁰ is limited by intrinsic material properties
- * M.L. Gorodetsky, A.A. Savchenkov, and V.S. Ilchenko, Opt. Lett. 21, 453 (1996)

MicrQspheres: Devices and Applications

Comparison with more conventional resonators

• Examples: or

• Characteristic dimensions: λ - 100 λ

Devices and applications

- Low threshold micro-lasers
- Narrow linewidth optical filters
- Sensors with submonolayer sensitivity
- Wavelength Division Multiplexing devices for telecommunications
- Non-linear optics
- Quantum electrodynamics experiments

Summary

Light interaction with small objects (d < λ)

• Light scattering due to harmonically driven dipole oscillator

Nanoparticles

- Insulators...Rayleigh Scattering (blue sky)
- Semiconductors....Resonance absorption at $\hbar \omega \ge E_{GAP}$, size dependent fluorescence...)
- Metals...Resonance absorption at surface plasmon frequency, no light emission)

Microparticles

- Particles with dimensions on the order of $\lambda \Rightarrow$ Enhanced forward scattering
 - \Rightarrow λ -independent (white clouds)
- Microspheres with diameters much larger than λ
 - ⇒ Intuitive ray-picture useful
 - \Rightarrow Rainbows due to dispersion H₂0
 - Applications: resonators, lasers, etc...