Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals

Course Info

Next Week (Sept. 5 and 7) no classes

First H/W is due Sept. 12

The Previous Lecture

Origin frequency dependence of χ in real materials

Lorentz model (harmonic oscillator model)

Today optical properties of materials

- Insulators (Lattice absorption, color centers...)
- Semiconductors (Energy bands, Urbach tail, excitons ...)
- Metals (Response due to bound and free electrons, plasma oscillations..)

Optical properties of molecules, nanoparticles, and microparticles

Classification Matter: Insulators, Semiconductors, Metals

Bonds and bands

• One atom, e.g. H. Schrödinger equation:

Two atoms: bond formation

Every electron contributes one state -->

Equilibrium distance d (after reaction)

Classification Matter

• Pauli principle: Only 2 electrons in the same electronic state (one spin ♣ one spin ♣)

Classification Matter

Atoms with many electrons

Classification Matter

Insulators, semiconductors, and metals

Classification based on bandstructure

Dispersion and Absorption in Insulators

Refractive Index Various Materials

Color Centers

- Insulators with a large E_{GAP} should not show absorption.....or?
- Ion beam irradiation or x-ray exposure result in beautiful colors!
- Due to formation of color (absorption) centers....(Homework assignment)

Absorption Processes in Semiconductors

Absorption spectrum of a typical semiconductor

Excitons: Electron and Hole Bound by Coulomb

Analogy with H-atom

- Electron orbit around a hole is similar to the electron orbit around a H-core
- 1913 Niels Bohr: Electron restricted to well-defined orbits

• Binding energy electron:
$$E_B = -\frac{m_e e^4}{2\left(4\pi\varepsilon_0\hbar n\right)^2} = -\frac{13.6}{n^2}eV, n=1,2,3,\dots$$

Where: m_e = Electron mass, ϵ_0 = permittivity of vacuum, \hbar = Planck's constant n = energy quantum number/orbit identifier

Binding Energy of an Electron to Hole

Electron orbit "around" a hole

- Electron orbit is expected to be qualitatively similar to a H-atom.
- Use reduced effective mass instead of m_e: $\implies 1/m^* = 1/m_e + 1/m_h$
- Correct for the relative dielectric constant of Si, $\epsilon_{\text{r,Si}}$ (screening).

- \implies Binding energy electron: $E_B = \frac{m^*}{m_e} \frac{1}{\varepsilon^2} 13.6 eV, n = 1, 2, 3, ...$
- Typical value for semiconductors: $E_{\rm B} = 10 meV 100 meV$
- Note: Exciton Bohr radius ~ 5 nm (many lattice constants)

Optical Properties of Metals (determine ε)

Current induced by a time varying field

- Consider a time varying field:
- Equation of motion electron in a metal:

- Substitution v into Eq. of motion:
- This can be manipulated into:
- The current density is defined as:
- It thus follows:

$$\mathbf{E}(t) = \operatorname{Re} \left\{ \mathbf{E}(\omega) \exp(-i\omega t) \right\}$$

$$m\frac{d^{2}\mathbf{x}}{dt^{2}} = m\frac{d\mathbf{v}}{dt} = -m\frac{\mathbf{v}}{\tau} - e\mathbf{E}$$
relaxation time ~ 10⁻¹⁴ s
$$\mathbf{v}(t) = \operatorname{Re}\left\{\mathbf{v}(\omega)\operatorname{exp}(-i\omega t)\right\}$$

$$\mathbf{v}(t) = \operatorname{Re}\left\{\mathbf{v}(\omega)\operatorname{exp}(-i\omega t)\right\}$$

$$-i\omega m\mathbf{v}(\omega) = -\frac{m\mathbf{v}(\omega)}{\tau} - e\mathbf{E}(\omega)$$

$$\mathbf{v}(\omega) = \frac{-e}{m(1/\tau - i\omega)} \mathbf{E}(\omega)$$

$$\mathbf{J}(\omega) = -ne\mathbf{v}$$

$$J(\omega) = -nev$$

Electron density

$$\mathbf{J}(\omega) = \frac{\left(ne^2/m\right)}{\left(1/\tau - i\omega\right)} \mathbf{E}(\omega)$$

Optical Properties of Metals

Determination conductivity

• From the last page:
$$\mathbf{J}(\omega) = \frac{\left(ne^2/m\right)}{\left(1/\tau - i\omega\right)}\mathbf{E}(\omega)$$
• Definition conductivity:
$$\mathbf{J}(\omega) = \sigma(\omega)\mathbf{E}(\omega)$$
where:
$$\sigma_0 = \frac{ne^2\tau}{m}$$

Both bound electrons and conduction electrons contribute to ε

• From the curl Eq.:
$$\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J} = \frac{\partial \varepsilon_B \boldsymbol{E}(t)}{\partial t} + \boldsymbol{J}$$
• For a time varying field:
$$\mathbf{E}(t) = \operatorname{Re}\left\{\mathbf{E}(\omega)\exp(-i\omega t)\right\}$$

$$\nabla \times \boldsymbol{H} = \frac{\partial \varepsilon_B \boldsymbol{E}(t)}{\partial t} + \boldsymbol{J} = -i\omega \varepsilon_B(\omega) \boldsymbol{E}(\omega) + \sigma(\omega) \boldsymbol{E}(\omega) = -i\omega \varepsilon_0 \left(\varepsilon_B(\omega) - \frac{\sigma(\omega)}{i\varepsilon_0 \omega} \right) \boldsymbol{E}(\omega)$$
Currents induced by ac-fields modeled by ε_{EFF}

Currents induced by ac-fields modeled by ε_{FFF}

• For a time varying field:
$$\varepsilon_{EFF} = \varepsilon_B - \frac{\sigma}{i\varepsilon_0\omega} = \varepsilon_B + i\frac{\sigma}{\varepsilon_0\omega}$$
Bound electrons
Conduction electrons

Optical Properties of Metals

Dielectric constant at $\omega \approx \omega_{\text{visible}}$

• Since
$$\omega_{\text{vis}}\tau >> 1$$
: $\sigma(\omega) = \frac{\sigma_0}{\left(1 - i\omega\tau\right)} = \frac{\sigma_0\left(1 + i\omega\tau\right)}{\left(1 + \omega^2\tau^2\right)} \approx \frac{\sigma_0}{\omega^2\tau^2} + i\frac{\sigma_0}{\omega\tau}$

• It follows that:
$$\varepsilon_{EFF} = \varepsilon_B + i \frac{\sigma}{\varepsilon_0 \omega} = \varepsilon_B + i \frac{\sigma_0}{\varepsilon_0 \omega^3 \tau^2} - \frac{\sigma_0}{\varepsilon_0 \omega^2 \tau}$$
• Define:
$$\omega_p^2 = \frac{\sigma_0}{\varepsilon_0 \tau} = \frac{ne^2}{\varepsilon_0 m} \; (\approx 10 eV \; for \; metals)$$

What does this look like for a real metal?

Optical Properties of Aluminum (simple case)

$$\varepsilon_{EFF} = \varepsilon_B - \frac{\omega_p^2}{\omega^2} + i \frac{\omega_p^2}{\omega^3 \tau}$$

• Only conduction e's contribute to: $\varepsilon_{\it EFF}$

$$\varepsilon_{B} \approx 1$$

$$\varepsilon_{EFF,Al} \approx 1 - \frac{\omega_{p}^{2}}{\omega^{2}} + i \frac{\omega_{p}^{2}}{\omega^{3} \tau}$$

Agrees with:

Ag: effects of Interband Transitions

- Ag show interesting feature in reflection
- Both conduction and bound e's contribute to $\varepsilon_{\rm \it EFF}$

• Feature caused by interband transitions

Excitation bound electrons

• For Ag: $\varepsilon_{\scriptscriptstyle B}=\varepsilon_{\scriptscriptstyle ib}^{\scriptscriptstyle \downarrow}\neq 0$

$$\varepsilon_{EFF} = \varepsilon_{ib} - \frac{\omega_p^2}{\omega^2} + i \frac{\omega_p^2}{\omega^3 \tau}$$

Summary

Light interaction with small objects (d < λ)

Light scattering due to harmonically driven dipole oscillator

Nanoparticles

- Insulators...Rayleigh Scattering (blue sky)
- Semiconductors....Resonance absorption at $\hbar\omega \ge E_{GAP}$, size dependent fluorescence...)
- Metals...Resonance absorption at surface plasmon frequency, no light emission)

Microparticles

- Particles with dimensions on the order of $\lambda \Longrightarrow$ Enhanced forward scattering
 - \Rightarrow λ -independent (white clouds)
- Microspheres with diameters much larger than λ
 - □ Intuitive ray-picture useful
 - Rainbows due to dispersion H₂0
 - Applications: resonators, lasers, etc...