Lecture 1: Light Interaction with Matter

Light Interaction with Matter

Maxwell's Equations

$\nabla \cdot \boldsymbol{D}=\rho_{f}$| Divergence equations | Curl equations |
| :---: | :--- |
| $\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{t}}$ | |
| $\nabla \cdot \boldsymbol{B}=0$ | $\nabla \times \boldsymbol{H}=\frac{\partial \boldsymbol{D}}{\partial \boldsymbol{t}}+\boldsymbol{J}$ |

$\begin{array}{rlrl}\boldsymbol{D}=\text { Electric flux density } & \boldsymbol{B}=\text { Magnetic flux density } \\ \boldsymbol{E}=\text { Electric field vector } & \boldsymbol{H}=\text { Magnetic field vector } \\ \rho & =\text { charge density } & \boldsymbol{J}=\text { current density }\end{array}$

Constitutive Relations

Constitutive relations relate flux density to polarization of a medium

Electric

Electric polarization vector...... Material dependent!!
$\varepsilon_{0}=$ Dielectric constant of vacuum $=8.85 \cdot 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}[\mathrm{~F} / \mathrm{m}]$
$\mathcal{E}=$ Material dependent dielectric constant
Total electric flux density $=$ Flux from external E-field + flux due to material polarization

Magnetic

Magnetic flux density Magnetic field vector Magnetic polarization vector $\mu_{0}=$ permeability of free space $=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$

Note: For now, we will focus on materials for which

$$
\boldsymbol{M}=0 \leadsto \boldsymbol{B}=\mu_{0} \boldsymbol{H}
$$

Divergence Equations

How did people come up with: $\nabla \cdot \boldsymbol{D}=\rho$?

Coulomb

- Charges of same sign repel each other (+ and + or - and -)
- Charges of opposite sign attract each other (+ and -)
- He explained this using the concept of an electric field : $\vec{F}=q \vec{E}$
\Rightarrow Every charge has some field lines associated with it

- He found: Larger charges give rise to stronger forces between charges
- Coulomb explained this with a stronger field (more field lines)

Divergence Equations

Gauss's Law (Gauss 1777-1855)

$$
\int_{A} \boldsymbol{D} \cdot d \boldsymbol{S}=\int_{A} \varepsilon E \cdot d \boldsymbol{S}=\int_{V} \rho d v
$$

E-field related to enclosed charge
Gauss's Theorem (very general)

$$
\int_{A} \boldsymbol{F} \cdot d \boldsymbol{S}=\int_{V} \nabla \cdot \boldsymbol{F} d v
$$

Combining the 2 Gauss's

$$
\int_{A} \boldsymbol{D} \cdot d \boldsymbol{S}=\int_{V} \nabla \cdot \boldsymbol{D} d v=\int_{V} \rho d v \quad \Rightarrow \quad \nabla \cdot \boldsymbol{D}=\rho
$$

The other divergence eq. $\nabla \cdot \boldsymbol{B}=0$ is derived in a similar way from $\int_{A} \boldsymbol{B} \cdot d \boldsymbol{S}=0$

Curl Equations

Ampere (1775-1836)

$$
\prod_{C} \boldsymbol{H} \cdot d \boldsymbol{l}=\int_{A}\left(\frac{\partial \boldsymbol{D}}{\partial t}+\boldsymbol{J}\right) \cdot d \boldsymbol{S} \Rightarrow \text { Magnetic field induced by: }{ }^{\boldsymbol{\pi}} \text { Changes in el. flux }
$$

Curl Equations

Ampere: $\int_{C} \boldsymbol{H} \cdot d \boldsymbol{l}=\int_{A}\left(\frac{\partial \boldsymbol{D}}{\partial t}+\boldsymbol{J}\right) \cdot d \boldsymbol{S}$
Stokes theorem: $\int_{C} \boldsymbol{F} \cdot d \boldsymbol{l}=\int_{A}(\nabla \times \boldsymbol{F}) \cdot d \boldsymbol{S}$

$$
\prod_{C} \boldsymbol{H} \cdot d \boldsymbol{l}=\int_{A} \underline{(\nabla \times \boldsymbol{H})} \cdot d \boldsymbol{S}=\int_{A} \underline{\left(\frac{\partial \boldsymbol{D}}{\partial t}+\boldsymbol{J}\right)} \cdot d \boldsymbol{S}
$$

$$
\nabla \times \boldsymbol{H}=\frac{\partial \boldsymbol{D}}{\partial \boldsymbol{t}}+\boldsymbol{J}
$$

$\nabla \times \boldsymbol{E}$ th $\frac{\partial \beta_{c}}{\partial t}$ curl eq.
Derived in a similar way from $\prod_{C} \boldsymbol{E} \cdot d \boldsymbol{l}=-\int_{A} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d \boldsymbol{S}$

$$
\prod_{C} \boldsymbol{E} \cdot d \boldsymbol{l}=\int_{A}(\nabla \times \boldsymbol{E}) \cdot d \boldsymbol{S}=-\int_{A} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d \boldsymbol{S}
$$

Stokes

Summary Maxwell's Equations

Divergence equations

$$
\begin{aligned}
& \nabla \cdot \boldsymbol{D}=\rho \\
& \nabla \cdot \boldsymbol{B}=0
\end{aligned}
$$

Flux lines start and end on charges or poles

Curl equations

$$
\begin{aligned}
& \nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{t}} \\
& \nabla \times \boldsymbol{H}=\frac{\partial \boldsymbol{D}}{\partial \boldsymbol{t}}+\boldsymbol{J}
\end{aligned}
$$

Changes in fluxes give rise to fields
Currents give rise to H -fields

Note: No constants such as $\mu_{0} \varepsilon_{0,} \mu \varepsilon, \mathrm{c}, \chi, \ldots \ldots$ appear when Eqs are written this way.

The Wave Equation

Plausibility argument for existence of EM waves

Curl equations: Changing \boldsymbol{E}-field results in changing \boldsymbol{H}-field results in changing \boldsymbol{E} - field....
The real thing
Goal: Derive a wave equation: $\quad \nabla^{2} \boldsymbol{U}(r, t)=\frac{1}{v^{2}} \frac{\partial^{2} \boldsymbol{U}(r, t)}{\partial \boldsymbol{t}^{2}} \quad$ for \boldsymbol{E} and \boldsymbol{H}
Solution: Waves propagating with $\boldsymbol{U}(\boldsymbol{r}, t)=\operatorname{Re}\left\{\boldsymbol{U}_{0}(\boldsymbol{r}) \exp (i \omega t)\right\}$ a (phase) velocity v

Position Time

Starting point: The curl equations

The Wave Equation for the E-field

Goal: $\quad \nabla^{2} \boldsymbol{E}(r, t)=\frac{1}{v^{2}} \frac{\partial^{2} \boldsymbol{E}(r, t)}{\partial \boldsymbol{t}^{2}}$
Curl Eqs: a) $\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{t}}=-\mu_{0} \frac{\partial \boldsymbol{H}}{\partial t}$ (Materials with $\boldsymbol{M}=0$ only)
b) $\nabla \times \boldsymbol{H}=\frac{\partial \boldsymbol{D}}{\partial \boldsymbol{t}}+\boldsymbol{J}$

Step 1: Try and obtain partial differential equation that just depends on \boldsymbol{E} \Rightarrow Apply curl on both side of a)

$$
\nabla \times \nabla \times \boldsymbol{E}=\nabla \times\left(-\mu_{0} \frac{\partial \boldsymbol{H}}{\partial t}\right)=-\mu_{0} \frac{\partial(\nabla \times \boldsymbol{H})}{\partial t}
$$

Step 2: Substitute b) into a)

$$
\begin{aligned}
\nabla \times \nabla \times \boldsymbol{E}=-\mu_{0} \frac{\partial^{2} \boldsymbol{D}}{\partial t^{2}} & -\mu_{0} \frac{\partial \boldsymbol{J}}{\partial t}=-\mu_{0} \varepsilon_{0}\left(\frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}\right)-\mu_{0} \frac{\partial^{2} \boldsymbol{P}}{\partial t^{2}}-\mu_{0} \frac{\partial \boldsymbol{J}}{\partial t} \\
\boldsymbol{D} & =\varepsilon_{0} \boldsymbol{E}+\boldsymbol{P} \quad \text { Cool!....looks like a wave equation already } 0
\end{aligned}
$$

The Wave Equation for the E-field

Verify that $\nabla \cdot \boldsymbol{E}=0$ when 1) $\rho_{f}=0$
2) $\mathcal{E}(r)$ does not vary significantly within a λ distance

Result:

$$
\nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}+\mu_{0} \frac{\partial^{2} \boldsymbol{P}}{\partial t^{2}}+\mu_{0} \frac{\partial \boldsymbol{J}}{\partial t}
$$

In order to solve this we need:

1) Find $\boldsymbol{P}(\boldsymbol{E})$
2) Find $\boldsymbol{J}(\boldsymbol{E})$...something like Ohm's law: $\boldsymbol{J}(\boldsymbol{E})=\sigma \boldsymbol{E}$... we will look at this later..for now assume: $\boldsymbol{J}(\boldsymbol{E})=0$

Dielectric Media

Linear, Homogeneous, and Isotropic Media

\boldsymbol{P} linearly proportional to $\boldsymbol{E}: \quad \boldsymbol{P}=\varepsilon_{0} \chi \boldsymbol{E}$
χ is a scalar constant called the "electric susceptibility"

$$
\nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}+\mu_{0} \frac{\partial^{2} \boldsymbol{P}}{\partial t^{2}}+\mu_{0} \frac{\partial \delta}{\partial t^{\prime}}
$$

All the materials properties

$$
\left.\begin{array}{l}
\nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}+\mu_{0} \varepsilon_{0} \chi \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}=\mu_{0} \varepsilon_{0}(1+\chi) \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} \\
\text { Define relative dielectric constant as: } \varepsilon_{r}=1+\chi
\end{array}\right\} \Rightarrow \nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon_{0} \varepsilon_{r} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}
$$

Results from \boldsymbol{P}
Note 1 : In anisotropic media \boldsymbol{P} and \boldsymbol{E} are not necessarily parallel: $P_{i}=\sum_{j} \varepsilon_{0} \chi_{i j} E_{j}$
Note2 : In non-linear media:

$$
\boldsymbol{P}=\varepsilon_{0} \chi \boldsymbol{E}+\varepsilon_{0} \chi^{(2)} \boldsymbol{E}^{2}+\varepsilon_{0} \chi^{(3)} \boldsymbol{E}^{3}+\ldots \ldots
$$

Properties of EM Waves in Bulk Materials

We have derived a wave equation for EM waves!

$$
\nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon_{0} \varepsilon_{r} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}
$$

Speed of an EM Wave in Matter

Speed of the EM wave:

Compare $\nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon_{0} \varepsilon_{r} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}$ and $\nabla^{2} \boldsymbol{E}=\frac{1}{v^{2}} \frac{\partial^{2} \boldsymbol{E}}{\partial \boldsymbol{t}^{2}}$

$$
\Rightarrow v^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \frac{1}{\varepsilon_{r}}=\frac{c_{0}^{2}}{\varepsilon_{r}}
$$

Where $\mathrm{c}_{0}{ }^{2}=1 /\left(\varepsilon_{0} \mu_{0}\right)=1 /\left(\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{m}^{3} \mathrm{~kg}\right)\left(4 \pi \times 10^{-7} \mathrm{mkg} / \mathrm{C}^{2}\right)\right)=\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}$
Optical refractive index
Refractive index is defined by: $n=\frac{c}{v}=\sqrt{\varepsilon_{r}}=\sqrt{1+\chi}$

Note: Including polarization results in same wave equation with a different $\varepsilon_{r} \Rightarrow c$ becomes v

Refractive Index Various Materials

Dispersion Relation

Dispersion relation: $\omega=\omega(\mathrm{k})$
Derived from wave equation $\quad \nabla^{2} \boldsymbol{E}(\boldsymbol{r}, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2} \boldsymbol{E}(\boldsymbol{r}, t)}{\partial \boldsymbol{t}^{2}}$
Substitute:

$$
\boldsymbol{E}(z, t)=\operatorname{Re}\{\boldsymbol{E}(z, \omega) \exp (-i k r+i \omega t)\}
$$

Result: $\quad k^{2}=\frac{n^{2}}{c^{2}} \omega^{2}$
Check this!

$$
\omega^{2}=\frac{c^{2}}{n^{2}} k^{2}
$$

Group velocity: $\quad v_{g} \equiv \frac{d \omega}{d k}$
Phase velocity: $\quad v_{p h}=\frac{\omega}{k}=\frac{c}{n}=\frac{c}{\sqrt{\varepsilon}_{r}}=\frac{c}{\sqrt{1+\chi}}$

Electromagnetic Waves

Solution to: $\quad \nabla^{2} \boldsymbol{E}(\boldsymbol{r}, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2} \boldsymbol{E}(\boldsymbol{r}, t)}{\partial \boldsymbol{t}^{2}}$
Monochromatic waves: $\quad \boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Re}\{\boldsymbol{E}(\boldsymbol{k}, \omega) \exp (-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t)\}$

$$
\boldsymbol{H}(\boldsymbol{r}, t)=\operatorname{Re}\{\boldsymbol{H}(\boldsymbol{k}, \omega) \exp (-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t)\} \text { are solutions! }
$$

TEM wave

Symmetry Maxwell's Equations result in $\boldsymbol{E} \perp \boldsymbol{H} \perp$ propagation direction
Optical intensity
Time average of Poynting vector: $\boldsymbol{S}(\boldsymbol{r}, t)=\boldsymbol{E}(\boldsymbol{r}, t) \times \boldsymbol{H}(\boldsymbol{r}, t)$

Light Propagation Dispersive Media

Relation between \boldsymbol{P} and \boldsymbol{E} is dynamic

The relation: $\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \chi \boldsymbol{E}(\boldsymbol{r}, t)$ assumes an instantaneous response

In real life: $\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \int_{-\infty}^{+\infty} d t^{\prime} x\left(\underline{t-t^{\prime}}\right) \boldsymbol{E}\left(\boldsymbol{r}, t^{\prime}\right)$
\boldsymbol{P} results from response to \boldsymbol{E} over some characteristic time τ :
Function $x(\mathrm{t})$ is a scalar function lasting a characteristic time τ :

EM waves in Dispersive Media

Relation between \boldsymbol{P} and \boldsymbol{E} is dynamic

$$
\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \int_{-\infty}^{+\infty} d t^{\prime} x\left(t-t^{\prime}\right) \boldsymbol{E}\left(\boldsymbol{r}, t^{\prime}\right)
$$

EM wave:

$$
\begin{aligned}
& \boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Re}\{\boldsymbol{E}(\boldsymbol{k}, \omega) \exp (-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t)\} \\
& \boldsymbol{P}(\boldsymbol{r}, t)=\operatorname{Re}\{\boldsymbol{P}(\boldsymbol{k}, \omega) \exp (-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t)\}
\end{aligned}
$$

Relation between complex amplitudes

$$
\boldsymbol{P}(\boldsymbol{k}, \omega)=\varepsilon_{0} \chi(\omega) \boldsymbol{E}(\boldsymbol{k}, \omega) \quad \text { (Slow response of matter } \Rightarrow \omega \text {-dependent behavior) }
$$

This follows by equation of the coefficients of $\exp (\mathrm{i} \omega \mathrm{t})$..check this!
It also follows that: $\varepsilon(\omega)=\varepsilon_{0}[1+\chi(\omega)]$

Light Propagation Dispersive Media

Relation between \boldsymbol{P} and \boldsymbol{E} is dynamic

The relation: $\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \chi \boldsymbol{E}(\boldsymbol{r}, t)$ assumes an instantaneous response

In real life: $\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \int_{-\infty}^{+\infty} d t^{\prime} x\left(\underline{t-t^{\prime}}\right) \boldsymbol{E}\left(\boldsymbol{r}, t^{\prime}\right)$
\boldsymbol{P} results from response to \boldsymbol{E} over some characteristic time τ :
Function $x(\mathrm{t})$ is a scalar function lasting a characteristic time τ :

EM waves in Dispersive Media

Relation between \boldsymbol{P} and \boldsymbol{E} is dynamic

$$
\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \int_{-\infty}^{+\infty} d t^{\prime} x\left(t-t^{\prime}\right) \boldsymbol{E}\left(\boldsymbol{r}, t^{\prime}\right)
$$

EM wave:

$$
\begin{aligned}
& \boldsymbol{E}(\boldsymbol{r}, t)=\operatorname{Re}\{\boldsymbol{E}(\boldsymbol{k}, \omega) \exp (-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t)\} \\
& \boldsymbol{P}(\boldsymbol{r}, t)=\operatorname{Re}\{\boldsymbol{P}(\boldsymbol{k}, \omega) \exp (-i \boldsymbol{k} \cdot \boldsymbol{r}+i \omega t)\}
\end{aligned}
$$

Relation between complex amplitudes

$$
\boldsymbol{P}(\boldsymbol{k}, \omega)=\varepsilon_{0} \chi(\omega) \boldsymbol{E}(\boldsymbol{k}, \omega) \quad \text { (Slow response of matter } \Rightarrow \omega \text {-dependent behavior) }
$$

This follows by equation of the coefficients of $\exp (\mathrm{i} \omega \mathrm{t})$..check this!
It also follows that: $\varepsilon(\omega)=\varepsilon_{0}[1+\chi(\omega)]$

Absorption and Dispersion of EM Waves

Transparent materials can be described by a purely real refractive index n

Dispersion relation $\omega^{2}=\frac{c^{2}}{n^{2}} k^{2} \Rightarrow k= \pm \frac{\omega}{c} n$
Absorbing materials can be described by a complex n :

$$
n=n^{\prime}+i n^{\prime \prime}
$$

It follows that: $k= \pm \frac{\omega}{c}\left(n^{\prime}+i n^{\prime \prime}\right)= \pm\left(\frac{\omega}{c} n^{\prime}+i \frac{\omega}{c} n^{\prime \prime}\right) \equiv \pm\left(\beta-i \frac{\alpha}{2}\right)$
Investigate + sign: $\quad \boldsymbol{E}(z, t)=\operatorname{Re}\left\{\boldsymbol{E}(k, \boldsymbol{\omega}) \exp \left(-i \boldsymbol{\beta} z-\frac{\boldsymbol{\alpha}}{2} z+i \omega t\right)\right\}$
Traveling wave Decay
Note: $\beta=\frac{\omega}{c} n^{\prime}=k_{0} n^{\prime} \quad \Rightarrow \mathrm{n}^{\prime}$ act as a regular refractive index

$$
\alpha=-2 \frac{\omega}{c} n "=-2 k_{0} n " \square \alpha \text { is the absorption coefficient }
$$

Absorption and Dispersion of EM Waves

n is derived quantity from χ (next lecture we determine χ for different materials)
Complex n results from a complex $\left.\chi: \begin{array}{l}\chi=\chi^{\prime}+i \chi^{\prime \prime} \\ \\ n=\sqrt{1+\chi}\end{array}\right\} \Rightarrow$

$$
\left.\begin{array}{r}
\Rightarrow n=n^{\prime}+i n^{\prime \prime}=\sqrt{1+\chi}=\sqrt{1+\chi^{\prime}+i \chi^{\prime \prime}} \\
\alpha=-2 k_{0} n^{\prime \prime}
\end{array}\right\} \Rightarrow n=n^{\prime}-i \frac{\alpha}{2 k_{0}}=\sqrt{1+\chi^{\prime}+i \chi^{\prime \prime}}
$$

Weakly absorbing media
When $\chi^{\prime} \ll 1$ and $\chi^{\prime \prime} \ll 1$: $\sqrt{1+\chi^{\prime}+i \chi^{\prime \prime}} \approx 1+\frac{1}{2}\left(\chi^{\prime}+i \chi^{\prime \prime}\right)$
Refractive index: $\quad n^{\prime}=1+\frac{1}{2} \chi^{\prime}$
Absorption coefficient: $\alpha=-2 k_{0} n^{\prime \prime}=-k_{0} \chi^{\prime \prime}$

Summary

Maxwell's Equations

$$
\nabla \cdot \boldsymbol{D}=\rho_{f} \quad \nabla \cdot \boldsymbol{B}=0 \quad \nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{t}} \quad \nabla \times \boldsymbol{H}=\frac{\partial \boldsymbol{D}}{\partial \boldsymbol{t}}+\boldsymbol{J}
$$

Curl Equations lead to

$$
\nabla^{2} \boldsymbol{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}+\mu_{0} \frac{\partial^{2} \boldsymbol{P}}{\partial t^{2}} \quad \text { (under certain conditions) }
$$

Linear, Homogeneous, and Isotropic Media

$$
\boldsymbol{P}=\varepsilon_{0} \chi \boldsymbol{E}
$$

Wave Equation with $v=c / n$

$$
\nabla^{2} \boldsymbol{E}(\boldsymbol{r}, t)=\frac{n^{2}}{c^{2}} \frac{\partial^{2} \boldsymbol{E}(\boldsymbol{r}, t)}{\partial \boldsymbol{t}^{2}}
$$

In real life: Relation between \boldsymbol{P} and \boldsymbol{E} is dynamic

$$
\boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \int_{-\infty}^{+\infty} d t^{\prime} x\left(t-t^{\prime}\right) \boldsymbol{E}\left(\boldsymbol{r}, t^{\prime}\right) \Rightarrow \boldsymbol{P}(\boldsymbol{k}, \omega)=\varepsilon_{0} \chi(\omega) \boldsymbol{E}(\boldsymbol{k}, \omega)
$$

This will have major consequences !!!

Next 2 Lectures

Real and imaginary part of χ are linked

- Kramers-Kronig
- Origin frequency dependence of χ in real materials

Derivation of χ for a range of materials

- Insulators (Lattice absorption, Urbach tail, color centers...)
- Semiconductors (Energy bands, excitons ...)
- Metals (Plasmons, plasmon-polaritons, ...)

Useful Equations and Valuable Relations

$\boldsymbol{D}=\varepsilon_{0}$ ICORstitutiver Fełatiøhs $\left.\chi\right) \boldsymbol{E}=\varepsilon_{0} \varepsilon_{r} \boldsymbol{E}$
$\boldsymbol{B}=\mu_{0} \boldsymbol{H}+\mu_{0} \boldsymbol{M}=\mu_{0} \boldsymbol{H}+\mu_{0} \chi_{m} \boldsymbol{H}=\mu_{0}\left(1+\chi_{m}\right) \boldsymbol{H}=\mu_{0} \mu_{r} \boldsymbol{H}$
Gauss's Law

$$
\int_{A} \boldsymbol{D} \cdot d \boldsymbol{S}=\int_{A} \varepsilon E \cdot d \boldsymbol{S}=\int_{V} \rho d v
$$

Maxwell (also) $\quad \int_{C} \boldsymbol{H} \cdot d \boldsymbol{l}=\int_{A}\left(\frac{\partial \boldsymbol{D}}{\partial t}+\boldsymbol{J}\right) \cdot d \boldsymbol{S}$
Dynamic relation between P and E: $\quad \boldsymbol{P}(\boldsymbol{r}, t)=\varepsilon_{0} \int_{-\infty}^{+\infty} d t^{\prime} x\left(t-t^{\prime}\right) \boldsymbol{E}\left(\boldsymbol{r}, t^{\prime}\right) \quad$ and $\quad \boldsymbol{P}(\boldsymbol{k}, \omega)=\varepsilon_{0} \chi(\omega) \boldsymbol{E}(\boldsymbol{k}, \omega)$
Dispersive and absorbing materials: $\quad \boldsymbol{E}(z, t)=\operatorname{Re}\left\{\boldsymbol{E}(z, \omega) \exp \left(-i \beta z-\frac{\alpha}{2} z+i \omega t\right)\right\}$ where $\beta=\frac{\omega}{c} n^{\prime}=k_{0} n^{\prime} \quad$,absorption coefficient $\alpha=-2 \frac{\omega}{c} n^{\prime \prime}=-2 k_{0} n^{\prime \prime}$
Handy Math Rules

$$
\begin{array}{ll}
\text { Vector identities: } & \nabla \times \nabla \times \boldsymbol{E}=\nabla(\nabla \cdot \boldsymbol{E})-\nabla^{2} \boldsymbol{E} \\
& \nabla \cdot \varepsilon \boldsymbol{E}=\varepsilon \nabla \cdot \boldsymbol{E}+\boldsymbol{E} \cdot \nabla \varepsilon
\end{array}
$$

$\int_{A} \boldsymbol{F} \cdot d \boldsymbol{S}=\int_{V} \nabla \cdot \boldsymbol{F} d v$ Gauss theorem
Stokes

$$
\oint_{C} \boldsymbol{F} \cdot d \boldsymbol{l}=\int_{A}(\nabla \times \boldsymbol{F}) \cdot d \boldsymbol{S}
$$

