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Lecture 1: Light Interaction with Matter

5 nm
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Light Interaction with Matter
Maxwell’s Equations

0∇⋅ =B

∂
∇× = −

∂
BE
t

∂
∇× = +

∂
DH J
t

Divergence  equations  Curl  equations  

fρ∇ ⋅ =D

D = Electric flux density B = Magnetic flux density

E = Electric field vector H = Magnetic field vector

J = current densityρ = charge density
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Constitutive Relations
Constitutive relations relate flux density to polarization of a medium

( )0ε ε= + =D E P E E
Electric polarization vector…… Material dependent!!

When P is proportional to EElectric E

-
+

+++

---

Total electric flux density = Flux from external E-field + flux due to material polarization

ε = Material dependent dielectric constant

ε0 = Dielectric constant of vacuum = 8.85 ⋅ 10-12 C2N-1m-2 [F/m]

( )0 0µ µ= +B H M H

Magnetic flux density Magnetic field vector

Magnetic

Magnetic polarization vector

µ0 = permeability of free space = 4πx10-7 H/m

Note: For now, we will focus on materials for which 
0=M 0µ=B H
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Divergence Equations
How did people come up with: ?ρ∇⋅ =D

Coulomb 
• Charges of same sign repel each other (+ and + or – and -)

• Charges of opposite sign attract each other (+ and -)

• He explained this using the concept of an electric field : F = qE

Every charge has some field lines associated with it

+ -

• He found: Larger charges give rise to stronger forces between charges
• Coulomb explained this with a stronger field (more field lines)
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Divergence Equations

E

dS

+
+ +

+

+

Gauss’s Law (Gauss 1777-1855)

A A V

d E d dvε ρ⋅ = ⋅ =∫ ∫ ∫D S S

E-field related to enclosed charge

Gauss’s Theorem (very general)

A V

d dv⋅ = ∇ ⋅∫ ∫F S F

Combining the 2 Gauss’s 

A V V

d dv dvρ⋅ = ∇ ⋅ =∫ ∫ ∫D S D ρ∇⋅ =D

0
A

d⋅ =∫B SThe other divergence eq. 0∇⋅ =B is derived in a similar way from
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Curl Equations

H

How did people come up with:
∂

∇× = +
∂
DH J
t

J

H

D

D increasing when
charging the capacitor

C

A

?

J

Ampere (1775-1836) 

C A

d d
t

∂ ⋅ = + ⋅ ∂ ∫ ∫
DH l J S Changes in el. fluxMagnetic field induced by:

Electrical currents
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Curl Equations

C A

d d
t

∂ ⋅ = + ⋅ ∂ ∫ ∫
DH l J S

( )
C A

d d⋅ = ∇× ⋅∫ ∫F l F S

Ampere:
( )

C A A

d d d
t

∂ ⋅ = ∇× ⋅ = + ⋅ ∂ ∫ ∫ ∫
DH l H S J S

Stokes
theorem:

∂
∇× = +

∂
DH J
t

B

E

CA

∂
∇× = −

∂
BE
t

Other curl eq.

Derived in a similar way from ∫ ∫
C A

d d
t

∂
⋅ = − ⋅

∂
BE l S

( )
C A A

d d d
t

∂
⋅ = ∇× ⋅ = − ⋅

∂∫ ∫ ∫
BE l E S S

Stokes
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Summary Maxwell’s Equations

Divergence  equations Curl  equations  

∂
∇× = −

∂
BE
t

ρ∇ ⋅ =D

∂
∇× = +

∂
DH J
t

0∇⋅ =B

Flux lines start and end 
on charges or poles

Changes in fluxes give rise to fields

Currents give rise to H-fields

Note: No constants such as µ0 ε0, µ ε, c, χ,……. appear when Eqs are written this way.
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The Wave Equation

Plausibility argument for existence of EM waves 

E
H H

EE
…….

Curl equations: Changing E-field results in changing H-field results in changing E- field…. 

The real thing

( ) ( )2
2

2 2

,1,
r t

r t
v

∂
∇ =

∂
U

U
t

Goal: Derive a wave equation: for E and H

( ) ( ) ( ){ }0, Re expt i tω=U r U rSolution: Waves propagating with
a (phase) velocity v 

Position Time

Starting point: The curl equations
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The Wave Equation for the E-field

( ) ( )2
2

2 2

,1,
r t

r t
v

∂
∇ =

∂
E

E
t

Goal:

0 t
µ∂ ∂

= − = −
∂ ∂
B HE
t

Curl Eqs: a) ∇× (Materials with M = 0 only) 

∂
= +
∂
DH J
t

∇×b)

Step 1: Try and obtain partial differential equation that just depends on E
Apply curl on both side of a) 

( )
0 0t t

µ µ
∂ ∇×∂ ∇×∇× = ∇× − = − ∂ ∂ 

HHE

Step 2: Substitute b) into a)
2 2 2

0 0 0 0 0 02 2 2t t t t t
µ µ µ ε µ µ∂ ∂ ∂ ∂ ∂

∇×∇× = − − = − − −
∂ ∂ ∂ ∂ ∂

D J E P JE

0ε= +D E P Cool!....looks like a wave equation already
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2 2

0 0 0 02 2t t t
µ ε µ µ∂ ∂ ∂

∇×∇× = − − −
∂ ∂ ∂

E P JE

2
2

2 2

1
v

∂
∇ =

∂
EE
t

With:

!( ) 2∇×∇× = ∇ ∇⋅ −∇E E EUse vector identity:

Verify that ∇⋅E = 0 when 1) ρf = 0

2) ε(r) does not vary significantly within a λ distance

2 2
2

0 0 0 02 2t t t
µ ε µ µ∂ ∂ ∂

∇ = + +
∂ ∂ ∂

E P JEResult:

The Wave Equation for the E-field

Compare:

1) Find P(E) 

2) Find J(E)…something like Ohm’s law: J(E) = σE
… we will look at this later..for now assume: J(E) = 0

In order to solve this we need:
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Dielectric Media

Linear, Homogeneous, and Isotropic Media

2 2
2

0 0 0 02 2t t t
µ ε µ µ∂ ∂ ∂

∇ = + +
∂ ∂ ∂

E P JE

P linearly proportional to E: 0ε χ=P E

χ is a scalar constant called the “electric susceptibility”

All the materials properties

( )
2 2 2

2
0 0 0 0 0 02 2 21

t t t
µ ε µ ε χ µ ε χ∂ ∂ ∂

∇ = + = +
∂ ∂ ∂

E E EE 2
2

0 0 2r t
µ ε ε ∂

∇ =
∂

EE

Results from P
Define relative dielectric constant as: ε 1r χ= +

(2) 2 (3) 3
0 0 0 ......ε χ ε χ ε χ= + + +P E E E

Note 1 : In anisotropic media P and E are not necessarily parallel: 0i ij j
j

P Eε χ=∑
Note2 : In non-linear media:



13

Properties of EM Waves in Bulk Materials
We have derived a wave equation for EM waves!

2
2

0 0 2r t
µ ε ε ∂

∇ =
∂

EE

Now what ?

Euh….

Let’s look at some of their properties



14

Speed of an EM Wave in Matter
Speed of the EM wave: 

2
2

0 0 2r t
µ ε ε ∂

∇ =
∂

EE
2

2
2 2

1
v

∂
∇ =

∂
EE
t

Compare and

2
2 0

0 0

1 1

r r

cv
µ ε ε ε

= =

Where c0
2 = 1/(ε0 µ0) = 1/((8.85x10-12 C2/m3kg) (4π x 10-7 m kg/C2)) = ( 3.0 x 108 m/s)2

Optical refractive index

1r
c
v

ε χ= = = +Refractive index is defined by: n

Note: Including polarization results in same wave equation with a different εr c becomes v  
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Refractive Index Various Materials
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Dispersion Relation

( ) ( ) ( ){ }, Re , expz t z ikr i tω ω= − +E E

( ) ( )22
2

2 2

,
,

tnt
c

∂
∇ =

∂
E r

E r
t

Dispersion relation: ω = ω(k)

Derived from wave equation

Substitute: 

2
2 2

2

c k
n

ω =

2
2 2

2

nk
c
ω= ω

gv

Result: 

Check this!

k

g
dv
dk
ω

≡Group velocity: 

1ph
r

c c cv
k n
ω

ε χ
= = = =

+
Phase velocity: 
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Electromagnetic Waves

( ) ( )22
2

2 2

,
,

tnt
c

∂
∇ =

∂
E r

E r
t

Solution to:

( ) ( ) ( ){ }, Re , expt i i tω ω= − ⋅ +E r E k k rMonochromatic waves:
Check these
are solutions!( ) ( ) ( ){ }, Re , expt i i tω ω= − ⋅ +H r H k k r

TEM wave 

Symmetry Maxwell’s Equations result in E ⊥ H ⊥ propagation direction

Optical intensity
( ) ( ) ( ), , ,t t t= ×r E r H rTime average of Poynting vector: S
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Light Propagation Dispersive Media
Relation between P and E is dynamic

The relation :                                        assumes an instantaneous response( ) ( )0, ,t tε χ=P r E r

( ) ( ) ( )0, ' ' , 't dt x t t tε
+∞

−∞

= −∫P r E rIn real life:

P results from response to E over some characteristic time τ :

Function x(t) is a scalar function lasting a characteristic time τ :

x(t-t’)

t’ = t - τ

E(t’)

x(t-t’) = 0 for t’ > t (causality)

t’
t’ = t
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EM waves in Dispersive Media

( ) ( ) ( ){ }, Re , expt i i tω ω= − ⋅ +E r E k k r

( ) ( ) ( )0, ' ' , 't dt x t t tε
+∞

−∞

= −∫P r E r

Relation between P and E is dynamic

( ) ( ) ( ){ }, Re , expt i i tω ω= − ⋅ +P r P k k r

EM wave: 

Relation between complex amplitudes

( ) ( ) ( )0, ,ω ε χ ω ω=P k E k (Slow response of matter     ω-dependent behavior)

This follows by equation of the coefficients of exp(iωt) ..check this!

( ) ( )0 1ω ε χ ω = + εIt also follows that: 
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Light Propagation Dispersive Media
Relation between P and E is dynamic

The relation :                                        assumes an instantaneous response( ) ( )0, ,t tε χ=P r E r

( ) ( ) ( )0, ' ' , 't dt x t t tε
+∞

−∞

= −∫P r E rIn real life:

P results from response to E over some characteristic time τ :

Function x(t) is a scalar function lasting a characteristic time τ :

x(t-t’)

t’ = t - τ

E(t’)

x(t-t’) = 0 for t’ > t (causality)

t’
t’ = t
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EM waves in Dispersive Media

( ) ( ) ( ){ }, Re , expt i i tω ω= − ⋅ +E r E k k r

( ) ( ) ( )0, ' ' , 't dt x t t tε
+∞

−∞

= −∫P r E r

Relation between P and E is dynamic

( ) ( ) ( ){ }, Re , expt i i tω ω= − ⋅ +P r P k k r

EM wave: 

Relation between complex amplitudes

( ) ( ) ( )0, ,ω ε χ ω ω=P k E k (Slow response of matter     ω-dependent behavior)

This follows by equation of the coefficients of exp(iωt) ..check this!

( ) ( )0 1ω ε χ ω = + εIt also follows that: 
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Absorption and Dispersion of EM Waves

Transparent materials can be described by a purely real refractive index n

2
2 2

2

c k
n

ω =Dispersion relation k n
c
ω

= ±

' ''n n in= +Absorbing materials can be described by a complex n:

( )' '' ' ''
2

k n in n i n i
c c c
ω ω ω αβ   = ± + = ± + ≡ ± −   

   
It follows that:

Investigate + sign:

( ) ( ) ( ){ }, Re , expz t z ikz i tω ω= − +E E

( ) ( ), Re , exp
2

z t z i z z i tαω β ω  = − − +  
  

E E

Traveling wave Decay

( ) ( ) ( ){ }, Re , expz t k ikz i tω ω= − +E E

( ) ( ), Re , exp
2

z t k i z z i tαω β ω  = − − +  
  

E E

EM wave:

0' 'n k n
c
ωβ = =

02 '' 2 ''n k n
c
ωα = − = −

Note: n’ act as a regular refractive index

α is the absorption coefficient



23

Absorption and Dispersion of EM Waves
n is derived quantity from χ (next lecture we determine χ for different materials)

' ''iχ χ χ= +

1n χ= +

Complex n results from a complex χ:

' '' 1 1 ' ''n n in iχ χ χ= + = + = + +

0

' 1 ' ''
2

n n i i
k
α χ χ= − = + +

02 ''k nα = −

Weakly absorbing media

When χ’<<1 and χ’’ << 1: ( )11 ' '' 1 ' ''
2

i iχ χ χ χ+ + ≈ + +

1' 1 '
2

n χ= +Refractive index:

0 02 '' ''k n kα χ= − = −Absorption coefficient:
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Summary
Maxwell’s Equations

∂
∇× = −

∂
BE
t

∂
∇× = +

∂
DH J
tfρ∇ ⋅ =D 0∇⋅ =B

Curl Equations lead to
2 2

2
0 0 02 2t t

µ ε µ∂ ∂
∇ = +

∂ ∂
E PE

0ε χ=P E

Wave Equation with v = c/n

( ) ( )22
2

2 2

,
,

tnt
c

∂
∇ =

∂
E r

E r
t

In real life: Relation between P and E is dynamic

( ) ( ) ( )0, ' ' , 't dt x t t tε
+∞

−∞

= −∫P r E r ( ) ( ) ( )0, ,ω ε χ ω ω=P k E k

(under certain conditions)

Linear, Homogeneous, and Isotropic Media

This will have major consequences !!! 
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Next 2 Lectures
Real and imaginary part of χ are linked

● Kramers-Kronig

● Origin frequency dependence of χ in real materials

Derivation of χ for a range of materials

● Insulators (Lattice absorption, Urbach tail, color centers…)

● Semiconductors (Energy bands, excitons …)

● Metals (Plasmons, plasmon-polaritons, …)
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Useful Equations and Valuable Relations
Curl Equations ∇

∂
∇× = −

∂
BE
t

∂
× = +

∂
DH J
tρ∇⋅ =D Maxwell’s Equations Divergence Equations

0∇⋅ =B

( )0 0 0 0 1 o rε ε ε χ ε χ ε ε= + = + = + =D E P E E EConstitutive relations:

( )0 0 0 0 0 01m m rµ µ µ µ χ µ χ µ µ= + = + = + =B H M H H H H

A A V

d E d dvε ρ⋅ = ⋅ =∫ ∫ ∫D S S

C A

d d
t

∂ ⋅ = + ⋅ ∂ ∫ ∫
DH l J S

( ) ( ) ( )0, ' ' , 't dt x t t tε
+∞

−∞

= −∫P r E r ( ) ( ) ( )0, ,ω ε χ ω ω=P k E k

( ) ( ), Re , exp
2

z t z i z z i tαω β ω  = − − +  
  

E E

0' 'n k n
c
ω

= = 02 '' 2 ''n k n
c
ω

= − = −

Gauss’s Law

Maxwell (also) 

Dynamic relation between P and E: and

Dispersive and absorbing materials: 

α,absorption coefficientβwhere

Handy Math Rules

( ) 2∇×∇× = ∇ ∇⋅ −∇E E EVector identities:

ε ε ε∇ ⋅ = ∇ ⋅ + ⋅∇E E E

Stokes

A V

d dv⋅ = ∇ ⋅∫ ∫F S F

( )
C A

d d⋅ = ∇× ⋅∫ ∫F l F S

Gauss theorem
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