Lecture 1: Light Interaction with Matter

Maxwell's Equations

	Divergence equations	Curl equations
$\nabla \cdot \boldsymbol{D} = \boldsymbol{\rho}_f$		$\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{t}}$
	$\nabla \cdot \boldsymbol{B} = 0$	$ abla imes \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial \boldsymbol{t}} + \boldsymbol{J}$

- D = Electric flux density
- E = Electric field vector
- ρ = charge density

- B = Magnetic flux density
- H = Magnetic field vector
- J = current density

Constitutive Relations

Constitutive relations relate flux density to polarization of a medium

$$D = \varepsilon_0 E + P(E) = \varepsilon E$$
 When *P* is proportional to *E*

Electric polarization vector..... Material dependent!!

 \mathcal{E}_0 = Dielectric constant of vacuum = 8.85 · 10⁻¹² C²N⁻¹m⁻² [F/m]

 \mathcal{E} = Material dependent dielectric constant

Total electric flux density = Flux from external E-field + flux due to material polarization

Magnetic

$$\mathbf{B} = \mu_0 \mathbf{H} + \mu_0 \mathbf{M}(\mathbf{H})$$

Magnetic flux density Magnetic field vector Magnetic polarization vector

 μ_0 = permeability of free space = 4 π x10⁻⁷ H/m

Note: For now, we will focus on materials for which

$$\dot{\boldsymbol{M}} = 0 \implies \boldsymbol{B} = \mu_0 \boldsymbol{H}$$

How did people come up with: $\nabla \cdot \boldsymbol{D} = \rho$?

Coulomb

- Charges of same sign repel each other (+ and + or and -)
- Charges of opposite sign attract each other (+ and -)
- He explained this using the concept of an electric field : $\vec{F} = q\vec{E}$

- He found: Larger charges give rise to stronger forces between charges
- Coulomb explained this with a stronger field (more field lines)

Divergence Equations

Gauss's Law (Gauss 1777-1855)

$$\int_{A} \boldsymbol{D} \cdot d\boldsymbol{S} = \int_{A} \varepsilon E \cdot d\boldsymbol{S} = \int_{V} \rho dv$$

E-field related to enclosed charge

Gauss's Theorem (very general)

$$\int_{A} \boldsymbol{F} \cdot d\boldsymbol{S} = \int_{V} \nabla \cdot \boldsymbol{F} dv$$

Combining the 2 Gauss's

$$\int_{A} \boldsymbol{D} \cdot d\boldsymbol{S} = \int_{V} \nabla \cdot \boldsymbol{D} dv = \int_{V} \rho dv \qquad \Longrightarrow \qquad \nabla \cdot \boldsymbol{D} = \rho$$

The other divergence eq. $\nabla \cdot \mathbf{B} = 0$ is derived in a similar way from $\int \mathbf{B} \cdot d\mathbf{S} = 0$

5

Curl Equations

Curl Equations

Ampere:
$$\iint_{C} \boldsymbol{H} \cdot d\boldsymbol{l} = \iint_{A} \left(\frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J} \right) \cdot d\boldsymbol{S}$$

Stokes
theorem:
$$\iint_{C} \boldsymbol{F} \cdot d\boldsymbol{l} = \iint_{A} (\nabla \times \boldsymbol{F}) \cdot d\boldsymbol{S}$$
$$\bigcup_{C} \boldsymbol{H} \cdot d\boldsymbol{l} = \iint_{A} (\nabla \times \boldsymbol{H}) \cdot d\boldsymbol{S} = \iint_{A} \left(\frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J} \right) \cdot d\boldsymbol{S}$$
$$\bigcup_{C} \boldsymbol{V} \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J}$$

 $\nabla \times E \text{Other curl eq.}$

Derived in a similar way from
$$\iint_{C} \boldsymbol{E} \cdot d\boldsymbol{l} = -\int_{A} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{S}$$

$$\iint_{C} \boldsymbol{E} \cdot d\boldsymbol{l} = \int_{A} (\nabla \times \boldsymbol{E}) \cdot d\boldsymbol{S} = -\int_{A} \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{S}$$

Stokes

Flux lines start and end on charges or poles

Changes in fluxes give rise to fields Currents give rise to H-fields

Note: No constants such as $\mu_0 \epsilon_{0, \mu} \epsilon$, c, χ ,..... appear when Eqs are written this way.

Plausibility argument for existence of EM waves

Curl equations: Changing *E*-field results in changing *H*-field results in changing *E*- field....

The real thing

Goal: Derive a wave equation:
$$\nabla^2 U(r,t) = \frac{1}{v^2} \frac{\partial^2 U(r,t)}{\partial t^2}$$
 for *E* and *H*
Solution: Waves propagating with a (phase) velocity *v*
 $U(r,t) = \operatorname{Re} \{ U_0(r) \exp(i\omega t) \}$
Position Time

Starting point: <u>The curl equations</u>

The Wave Equation for the E-field

Goal:
$$\nabla^2 E(r,t) = \frac{1}{v^2} \frac{\partial^2 E(r,t)}{\partial t^2}$$

Curl Eqs: a) $\nabla \times E = -\frac{\partial B}{\partial t} = -\mu_0 \frac{\partial H}{\partial t}$ (Materials with $M = 0$ only)
b) $\nabla \times H = \frac{\partial D}{\partial t} + J$

Step 1: Try and obtain partial differential equation that just depends on E

Apply curl on both side of a)

$$\nabla \times \nabla \times \boldsymbol{E} = \nabla \times \left(-\mu_0 \frac{\partial \boldsymbol{H}}{\partial t}\right) = -\mu_0 \frac{\partial \left(\nabla \times \boldsymbol{H}\right)}{\partial t}$$

Step 2: Substitute b) into a)

$$\nabla \times \nabla \times \boldsymbol{E} = -\mu_0 \frac{\partial^2 \boldsymbol{D}}{\partial t^2} - \mu_0 \frac{\partial \boldsymbol{J}}{\partial t} = -\mu_0 \varepsilon_0 \frac{\partial^2 \boldsymbol{E}}{\partial t^2} - \mu_0 \frac{\partial^2 \boldsymbol{P}}{\partial t^2} - \mu_0 \frac{\partial \boldsymbol{J}}{\partial t}$$
$$\boldsymbol{D} = \varepsilon_0 \boldsymbol{E} + \boldsymbol{P}$$
Cool!....looks like a wave equation alreadyo

2) Find J(E)...something like Ohm's law: $J(E) = \sigma E$... we will look at this later..for now assume: J(E) = 0

Linear, Homogeneous, and Isotropic Media

P linearly proportional to **E**: $P = \varepsilon_0 \chi E$

 χ is a scalar constant called the "electric susceptibility"

$$\nabla^{2} \boldsymbol{E} = \mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} + \mu_{0} \frac{\partial^{2} \boldsymbol{P}}{\partial t^{2}} + \mu_{0} \frac{\partial \boldsymbol{J}}{\partial t}$$

All the materials properties

$$\nabla^{2} \boldsymbol{E} = \mu_{0} \varepsilon_{0} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} + \mu_{0} \varepsilon_{0} \chi \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} = \mu_{0} \varepsilon_{0} (1 + \chi) \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}$$
efine relative dielectric constant as: $\varepsilon = 1 + \chi$

$$\nabla^{2} \boldsymbol{E} = \mu_{0} \varepsilon_{0} \varepsilon_{r} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}}$$

De $F_r = I + \chi$

Results from **P**

Note 1 : In anisotropic media **P** and **E** are not necessarily parallel: $P_i = \sum_i \varepsilon_0 \chi_{ij} E_j$ $\boldsymbol{P} = \varepsilon_0 \boldsymbol{\chi} \boldsymbol{E} + \varepsilon_0 \boldsymbol{\chi}^{(2)} \boldsymbol{E}^2 + \varepsilon_0 \boldsymbol{\chi}^{(3)} \boldsymbol{E}^3 + \dots$ Note2 : In non-linear media:

Properties of EM Waves in Bulk Materials

We have derived a wave equation for EM waves!

$$\nabla^2 \boldsymbol{E} = \mu_0 \varepsilon_0 \varepsilon_r \frac{\partial^2 \boldsymbol{E}}{\partial t^2}$$

Speed of the EM wave:

Compare
$$\nabla^2 E = \mu_0 \varepsilon_0 \varepsilon_r \frac{\partial^2 E}{\partial t^2}$$
 and $\nabla^2 E = \frac{1}{v^2} \frac{\partial^2 E}{\partial t^2}$
 $\psi^2 = \frac{1}{\mu_0 \varepsilon_0} \frac{1}{\varepsilon_r} = \frac{c_0^2}{\varepsilon_r}$

Where $c_0^2 = 1/(\epsilon_0 \mu_0) = 1/((8.85 \times 10^{-12} \text{ C}^2/\text{m}^3\text{kg}) (4\pi \times 10^{-7} \text{ m kg/C}^2)) = (3.0 \times 10^8 \text{ m/s})^2$

Optical refractive index

Refractive index is defined by:
$$n = \frac{c}{v} = \sqrt{\varepsilon_r} = \sqrt{1 + \chi}$$

Note: Including polarization results in same wave equation with a different $\epsilon_r \implies c$ becomes v

Refractive Index Various Materials

15

Dispersion Relation

Dispersion relation: $\omega = \omega(k)$

Derived from wave equation
$$\nabla^2 E(\mathbf{r}, t) = \frac{n^2}{c^2} \frac{\partial^2 E(\mathbf{r}, t)}{\partial t^2}$$

Substitute: $E(z, t) = \operatorname{Re}\left\{E(z, \omega)\exp(-ikr + i\omega t)\right\}$

Group velocity: $v_g \equiv \frac{d\omega}{dk}$

Phase velocity:

$$v_{ph} = \frac{\omega}{k} = \frac{c}{n} = \frac{c}{\sqrt{\varepsilon}_r} = \frac{c}{\sqrt{1+\chi}}$$

16

Electromagnetic Waves

Symmetry Maxwell's Equations result in $E \perp H \perp$ propagation direction

Optical intensity

Time average of Poynting vector: $S(r,t) = E(r,t) \times H(r,t)$

The relation : $P(r,t) = \varepsilon_0 \chi E(r,t)$ assumes an instantaneous response

In real life:
$$P(\mathbf{r},t) = \varepsilon_0 \int_{-\infty}^{+\infty} dt' x(\underline{t-t'}) E(\mathbf{r},t')$$

 \pmb{P} results from response to \pmb{E} over some characteristic time τ :

Function x(t) is a scalar function lasting a characteristic time τ :

$$\boldsymbol{P}(\boldsymbol{r},t) = \varepsilon_0 \int_{-\infty}^{+\infty} dt' x(t-t') \boldsymbol{E}(\boldsymbol{r},t')$$

EM wave:

$$E(\mathbf{r},t) = \operatorname{Re}\left\{E(\mathbf{k},\omega)\exp(-i\mathbf{k}\cdot\mathbf{r}+i\omega t)\right\}$$
$$P(\mathbf{r},t) = \operatorname{Re}\left\{P(\mathbf{k},\omega)\exp(-i\mathbf{k}\cdot\mathbf{r}+i\omega t)\right\}$$

Relation between complex amplitudes

 $P(k,\omega) = \varepsilon_0 \chi(\omega) E(k,\omega)$ (Slow response of matter ω -dependent behavior)

This follows by equation of the coefficients of $exp(i\omega t)$...check this!

It also follows that: $\varepsilon(\omega) = \varepsilon_0 [1 + \chi(\omega)]$

The relation : $P(r,t) = \varepsilon_0 \chi E(r,t)$ assumes an instantaneous response

In real life:
$$P(\mathbf{r},t) = \varepsilon_0 \int_{-\infty}^{+\infty} dt' x(\underline{t-t'}) E(\mathbf{r},t')$$

 \pmb{P} results from response to \pmb{E} over some characteristic time τ :

Function x(t) is a scalar function lasting a characteristic time τ :

$$\boldsymbol{P}(\boldsymbol{r},t) = \varepsilon_0 \int_{-\infty}^{+\infty} dt' x(t-t') \boldsymbol{E}(\boldsymbol{r},t')$$

EM wave:

$$\boldsymbol{E}(\boldsymbol{r},t) = \operatorname{Re}\left\{\boldsymbol{E}(\boldsymbol{k},\omega)\exp(-i\boldsymbol{k}\cdot\boldsymbol{r}+i\omega t)\right\}$$
$$\boldsymbol{P}(\boldsymbol{r},t) = \operatorname{Re}\left\{\boldsymbol{P}(\boldsymbol{k},\omega)\exp(-i\boldsymbol{k}\cdot\boldsymbol{r}+i\omega t)\right\}$$

Relation between complex amplitudes

 $\boldsymbol{P}(\boldsymbol{k},\omega) = \varepsilon_0 \chi(\omega) \boldsymbol{E}(\boldsymbol{k},\omega) \quad \text{(Slow response of matter}) \omega \text{-dependent behavior)}$

This follows by equation of the coefficients of $exp(i\omega t)$...check this!

It also follows that: $\varepsilon(\omega) = \varepsilon_0 [1 + \chi(\omega)]$

Transparent materials can be described by a purely real refractive index n

EM wave: $E(z,t) = \operatorname{Re}\left\{E(k,\omega)\exp(-ikz+i\omega t)\right\}$

Dispersion relation $\omega^2 = \frac{c^2}{n^2}k^2 \implies k = \pm \frac{\omega}{c}n$

Absorbing materials can be described by a complex n:

$$n = n' + in''$$

It follows that:
$$k = \pm \frac{\omega}{c} (n' + in'') = \pm \left(\frac{\omega}{c} n' + i \frac{\omega}{c} n'' \right) \equiv \pm \left(\beta - i \frac{\alpha}{2} \right)$$

Investigate + sign: $E(z,t) = \operatorname{Re} \left\{ E(k,\omega) \exp \left(-i\beta z - \frac{\alpha}{2} z + i\omega t \right) \right\}$
Traveling wave Decay

Note:
$$\beta = \frac{\omega}{c}n' = k_0n'$$
 \implies n' act as a regular refractive index
 $\alpha = -2\frac{\omega}{c}n'' = -2k_0n'' \implies \alpha$ is the absorption coefficient

Absorption and Dispersion of EM Waves

n is derived quantity from χ (next lecture we determine χ for different materials)

Complex n results from a complex
$$\chi$$
: $\chi = \chi' + i\chi''$
 $n = \sqrt{1 + \chi}$

$$\implies n = n' + in'' = \sqrt{1 + \chi} = \sqrt{1 + \chi' + i\chi''}$$

$$\alpha = -2k_0n''$$

$$\implies n = n' - i\frac{\alpha}{2k_0} = \sqrt{1 + \chi' + i\chi''}$$

Weakly absorbing media

When
$$\chi' \ll 1$$
 and $\chi'' \ll 1$: $\sqrt{1 + \chi' + i\chi''} \approx 1 + \frac{1}{2} (\chi' + i\chi'')$
Refractive index: $n' = 1 + \frac{1}{2} \chi'$

Absorption coefficient: $\alpha = -2k_0n" = -k_0\chi"$

Summary

Maxwell's Equations

$$\nabla \cdot \boldsymbol{D} = \rho_{f} \qquad \nabla \cdot \boldsymbol{B} = 0 \qquad \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \qquad \nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J}$$
Curl Equations lead to
$$\nabla^{2}\boldsymbol{E} = \mu_{0}\varepsilon_{0}\frac{\partial^{2}\boldsymbol{E}}{\partial t^{2}} + \mu_{0}\frac{\partial^{2}\boldsymbol{P}}{\partial t^{2}} \quad \text{(under certain conditions)}$$
Linear, Homogeneous, and Isotropic Media
$$\boldsymbol{P} = \varepsilon_{0}\chi\boldsymbol{E}$$
Wave Equation with $\mathbf{v} = \mathbf{c}/\mathbf{n}$

$$\nabla^{2}\boldsymbol{E}(\boldsymbol{r},t) = \frac{n^{2}}{c^{2}} \frac{\partial^{2}\boldsymbol{E}(\boldsymbol{r},t)}{\partial \boldsymbol{t}^{2}}$$

In real life: Relation between *P* and *E* is dynamic

$$\boldsymbol{P}(\boldsymbol{r},t) = \varepsilon_0 \int_{-\infty}^{+\infty} dt' x(t-t') \boldsymbol{E}(\boldsymbol{r},t') \quad \Longrightarrow \quad \boldsymbol{P}(\boldsymbol{k},\omega) = \varepsilon_0 \chi(\omega) \boldsymbol{E}(\boldsymbol{k},\omega)$$

This will have major consequences !!!

Real and imaginary part of $\boldsymbol{\chi}$ are linked

- Kramers-Kronig
- \bullet Origin frequency dependence of χ in real materials

Derivation of χ for a range of materials

- Insulators (Lattice absorption, Urbach tail, color centers...)
- Semiconductors (Energy bands, excitons ...)
- Metals (Plasmons, plasmon-polaritons, ...)

Useful Equations and Valuable Relations

 $\nabla \cdot \boldsymbol{D} = \boldsymbol{M}$ axwell's Equations Divergence Equations

 $\nabla \cdot \boldsymbol{B} = 0$

Curl Equations $\nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J}$ $\nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$

 $D = \varepsilon_0 E$ Constitutive relations $\chi E = \varepsilon_0 \varepsilon_r E$

$$\boldsymbol{B} = \mu_0 \boldsymbol{H} + \mu_0 \boldsymbol{M} = \mu_0 \boldsymbol{H} + \mu_0 \boldsymbol{\chi}_m \boldsymbol{H} = \mu_0 \left(1 + \boldsymbol{\chi}_m \right) \boldsymbol{H} = \mu_0 \mu_r \boldsymbol{H}$$

Gauss's Law

$$\int_{A} \boldsymbol{D} \cdot d\boldsymbol{S} = \int_{A} \varepsilon E \cdot d\boldsymbol{S} = \int_{V} \rho dv$$

Maxwell (also)

 $\iint_{A} \boldsymbol{H} \cdot d\boldsymbol{l} = \int_{A} \left(\frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{J} \right) \cdot d\boldsymbol{S}$

Dynamic relation between P and E: P(n)

Dispersive and absorbing materials:

$$P(\mathbf{r},t) = \varepsilon_0 \int_{-\infty}^{+\infty} dt' x(t-t') E(\mathbf{r},t') \quad \text{and} \quad P(\mathbf{k},\omega) = \varepsilon_0 \chi(\omega) E(\mathbf{k},\omega)$$
$$E(z,t) = \operatorname{Re}\left\{ E(z,\omega) \exp\left(-i\beta z - \frac{\alpha}{2}z + i\omega t\right) \right\}$$
where $\beta = \frac{\omega}{c}n' = k_0n'$, absorption coefficient $\alpha = -2\frac{\omega}{c}n'' = -2k_0n''$

Handy Math Rules

Vector identities: $\nabla \times \nabla \times \boldsymbol{E} = \nabla (\nabla \cdot \boldsymbol{E}) - \nabla^2 \boldsymbol{E}$ $\nabla \cdot \boldsymbol{\varepsilon} \boldsymbol{E} = \boldsymbol{\varepsilon} \nabla \cdot \boldsymbol{E} + \boldsymbol{E} \cdot \nabla \boldsymbol{\varepsilon}$ $\int_{A} \boldsymbol{F} \cdot d\boldsymbol{S} = \int_{V} \nabla \cdot \boldsymbol{F} dv_{\text{Gauss theorem}}$

Stokes $\prod_{C} \boldsymbol{F} \cdot d\boldsymbol{l} = \int_{A} (\nabla \times \boldsymbol{F}) \cdot d\boldsymbol{S}$ 26