# Nanophotonics\*

Professor Vladimir M. Shalaev ECE695S



<sup>\*)</sup>This course was prepared with M. Brongersma and S. Fan from Stanford. There help is highly appreciated.

# **Nanophotonics**

#### Instructor

Professor Vladimir M. Shalaev

MSEE270 and BRK2295; 494-9855

Email: shalaev@purdue.edu

Office hour: Tue, 2-3pm

#### Grader

. . . .

#### Course Web page

http://shay.ecn.purdue.edu/~ece695s/ to download lecture notes

#### Recommended Textbook:

Photonic Crystals: Molding the flow of light.

By Joannopoulos, Meade and Winn, (Princeton University Press, Princeton, 1995).

Near-field optics and surface plasmon polaritons

Editor: Satoshi Kawata (Available online via course webpage)

#### Grading

30% homework, 30% midterm exam, 40% final (presentation and report)

## **Overview of the Course**

## Part I: Introduction to light interaction with matter

Derivation Wave Equation in matter from Maxwell's equations Dielectric properties of insulators, semiconductors and metals (bulk) Light interaction with nanostructures and microstructures (compared with  $\lambda$ )

## Part II: Photonic Crystals

Electromagnetic effects in periodic media

Media with periodicity in 1, 2, and 3-dimensions

Applications: Omni-directional reflection, sharp waveguide bends,

Light localization, Superprism effects, Photonic crystal fibers

Part III: Metal optics (plasmonics) and nanophotonics
Light interaction with 0, 1, and 2 dimensional metallic nanostructures

Guiding and focusing light to nanoscale (below the diffraction limit)

Near-field optical microscopy

Transmission through subwavelength apertures

Metamaterials, optical magnetism, and negative refractive index

Perfect lens

Cloaking objects

# **Overview in Images**



J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997)



J.R. Krenn et al., Europhys.Lett. **60**, **663-669** (2002)

## **Motivation**

## Major breakthroughs are often materials related

- Stone Age, Iron Age, Si Age,....metamaterials
- People realized the utility of naturally occurring materials
- Scientists are now able to engineer new functional nanostructured materials

## Is it possible to engineer new materials with useful optical properties

• Yes! (

• Wonderful things happen when structural dimensions are  $\approx \lambda_{\text{light}}$  and much less This course talks about what these "things" are...and why they happen

## What are the smallest possible devices with optical functionality?

- Scientists have gone from big lenses, to optical fibers, to photonic crystals, to...
- Does the diffraction set a fundamental limit?
- Possible solution: metal optics/plasmonics

# **Designing New Functional Devices**

We need to be able to solve the following problem:



