Nanophotonics* Professor Vladimir M. Shalaev ECE695S ^{*)}This course was prepared with M. Brongersma and S. Fan from Stanford. There help is highly appreciated. # **Nanophotonics** #### Instructor Professor Vladimir M. Shalaev MSEE270 and BRK2295; 494-9855 Email: shalaev@purdue.edu Office hour: Tue, 2-3pm #### Grader #### Course Web page http://shay.ecn.purdue.edu/~ece695s/ to download lecture notes #### Recommended Textbook: Photonic Crystals: Molding the flow of light. By Joannopoulos, Meade and Winn, (Princeton University Press, Princeton, 1995). Near-field optics and surface plasmon polaritons Editor: Satoshi Kawata (Available online via course webpage) #### Grading 30% homework, 30% midterm exam, 40% final (presentation and report) ## **Overview of the Course** ## Part I: Introduction to light interaction with matter Derivation Wave Equation in matter from Maxwell's equations Dielectric properties of insulators, semiconductors and metals (bulk) Light interaction with nanostructures and microstructures (compared with λ) ## Part II: Photonic Crystals Electromagnetic effects in periodic media Media with periodicity in 1, 2, and 3-dimensions Applications: Omni-directional reflection, sharp waveguide bends, Light localization, Superprism effects, Photonic crystal fibers Part III: Metal optics (plasmonics) and nanophotonics Light interaction with 0, 1, and 2 dimensional metallic nanostructures Guiding and focusing light to nanoscale (below the diffraction limit) Near-field optical microscopy Transmission through subwavelength apertures Metamaterials, optical magnetism, and negative refractive index Perfect lens Cloaking objects # **Overview in Images** J. D. Joannopoulos, et al, Nature, vol.386, p.143-9 (1997) J.R. Krenn et al., Europhys.Lett. **60**, **663-669** (2002) ## **Motivation** ## Major breakthroughs are often materials related - Stone Age, Iron Age, Si Age,....metamaterials - People realized the utility of naturally occurring materials - Scientists are now able to engineer new functional nanostructured materials ## Is it possible to engineer new materials with useful optical properties • Yes! (• Wonderful things happen when structural dimensions are $\approx \lambda_{\text{light}}$ and much less This course talks about what these "things" are...and why they happen ## What are the smallest possible devices with optical functionality? - Scientists have gone from big lenses, to optical fibers, to photonic crystals, to... - Does the diffraction set a fundamental limit? - Possible solution: metal optics/plasmonics # **Designing New Functional Devices** We need to be able to solve the following problem: